scholarly journals EFFECTS OF A 6-WEEK TASK SPECIFIC POWER TRAINING WITH AND WITHOUT COGNITIVE TRAINING AMONG OLDER ADULTS WITH SLOW GAIT

2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S875-S875
Author(s):  
Elisa F Ogawa ◽  
Rebekah Harris ◽  
Joseph DeGutis ◽  
Rachel Ward ◽  
Jennifer Brach ◽  
...  

Abstract Task-specific power training (InVEST) targets leg power and mobility skills that are beneficial for treating slow gait speed for older adults. This study investigated the efficacy of a short-term InVEST training on leg power, mobility performance, and gait characteristics and further examine whether the addition of cognitive training would augment the impact on the outcomes. Mobility limited community-dwelling older Veterans age ≥65 years were recruited. Participants were randomly assigned to either InVEST training (n=10) or InVEST+cognitive training (n=11). Training occurred 3 times per week for 6 weeks. Sessions were either 70 minutes (InVest+cognitive training) or 40 minutes (InVEST) in duration. Leg power, mobility performance (Short Physical Performance Battery), and gait characteristics (gait speed, stance time, step width, swing time, step length and their variabilities under single-task, simple and complex dual-task walking conditions) were evaluated. Twenty-one men with mean age 76±7 years completed the study and 86% were of white race. Among all participants, clinically relevant and statistically significant improvements in leg power, mobility performance, and gait characteristics (gait speed, step length, stance time under all three gait conditions) were observed. There were no statistically significant or clinically relevant group differences among any of the outcomes based on cognitive training status. Short-term InVEST training led to clinically meaningful improvements in leg power, mobility performance, and gait characteristics. These findings add to the body of evidence supporting the benefits of InVEST training on mobility and do not support the contention that mixed modes of training (cognitive and physical) may augment mobility outcomes.

2012 ◽  
Vol 92 (5) ◽  
pp. 748-756 ◽  
Author(s):  
Michael D. Lewek ◽  
Jeff Feasel ◽  
Erin Wentz ◽  
Frederick P. Brooks ◽  
Mary C. Whitton

Background and Purpose Persistent deficits in gait speed and spatiotemporal symmetry are prevalent following stroke and can limit the achievement of community mobility goals. Rehabilitation can improve gait speed, but has shown limited ability to improve spatiotemporal symmetry. The incorporation of combined visual and proprioceptive feedback regarding spatiotemporal symmetry has the potential to be effective at improving gait. Case Description A 60-year-old man (18 months poststroke) and a 53-year-old woman (21 months poststroke) each participated in gait training to improve gait speed and spatiotemporal symmetry. Each patient performed 18 sessions (6 weeks) of combined treadmill-based gait training followed by overground practice. To assist with relearning spatiotemporal symmetry, treadmill-based training for both patients was augmented with continuous, real-time visual and proprioceptive feedback from an immersive virtual environment and a dual belt treadmill, respectively. Outcomes Both patients improved gait speed (patient 1: 0.35 m/s improvement; patient 2: 0.26 m/s improvement) and spatiotemporal symmetry. Patient 1, who trained with step-length symmetry feedback, improved his step-length symmetry ratio, but not his stance-time symmetry ratio. Patient 2, who trained with stance-time symmetry feedback, improved her stance-time symmetry ratio. She had no step-length asymmetry before training. Discussion Both patients made improvements in gait speed and spatiotemporal symmetry that exceeded those reported in the literature. Further work is needed to ascertain the role of combined visual and proprioceptive feedback for improving gait speed and spatiotemporal symmetry after chronic stroke.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9463
Author(s):  
Byungjoo Noh ◽  
Changhong Youm ◽  
Myeounggon Lee ◽  
Sang-Myung Cheon

Background No previous study has examined the age-dependent characteristics of gait in individuals between 50 and 79 years simultaneously in healthy individuals and individuals with Parkinson’s disease (PD) over continuous gait cycles. This study aimed to investigate age-related differences in gait characteristics on individuals age ranged 50–79 years, including individuals with PD, during a 1-minute treadmill walking session. Additionally, we aimed to investigate the differences associated with spatiotemporal gait parameters and PD compared in age-matched individuals. Methods This study included 26 individuals with PD and 90 participants age ranged 50–79 years. The treadmill walking test at a self-preferred speed was performed for 1 min. The embedded inertial measurement unit sensor in the left and right outsoles-based system was used to collect gait characteristics based on tri-axial acceleration and tri-axial angular velocities. Results Participants aged >60 years had a decreased gait speed and shortened stride and step, which may demonstrate a distinct shift in aging (all p < 0.005). Individuals with PD showed more of a decrease in variables with a loss of consistency, including gait asymmetry (GA), phase coordination index (PCI) and coefficient of variation (CV) of all variables, than age-matched individuals (all p < 0.001). Gait speed, stride and step length, stance phase, variability, GA and PCI were the variables that highly depended on age and PD. Discussion Older adults could be considered those older than 60 years of age when gait alterations begin, such as a decreased gait speed as well as shortened stride and step length. On the other hand, a loss of consistency in spatiotemporal parameters and a higher GA and PCI could be used to identify individuals with PD. Thus, the CV of all spatiotemporal parameters, GA and PCI during walking could play an important role and be useful in identifying individuals with PD. Conclusion This study provided the notable aging pattern characteristics of gait in individuals >50 years, including individuals with PD. Increasing age after 60 years is associated with deterioration in spatiotemporal parameters of gait during continuous 1-minute treadmill walking. Additionally, GA, PCI and the CV of all variables could be used to identify PD which would be placed after 70 years of age. It may be useful to determine the decline of gait performance in general and among individuals with PD.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Simone V. Gill ◽  
Cara L. Lewis ◽  
Jeremy M. DeSilva

Walking and foot arch structure have risk-increasing effects that contribute to decreased physical activity in adults with overweight and obese body mass index (BMI) scores. However, it is unknown whether both excessive weight and arch height influence walking compared to the effects of excessive weight or arch height alone. The purpose of this study was to investigate if arch height mediates obesity-related walking characteristics among adults with different BMI classifications. Spatiotemporal walking kinematics and dynamic plantar pressure were collected as adults with normal (n=30), overweight (n=34), and obese (n=25) BMI scores walked at their preferred speed. Digital footprints created with plantar pressure data were used to calculate a measure of arch height, the Chippaux-Smirak Index (CSI). The results showed that obese adults had lower arches than normal weight adults (P<0.05). Arch height was related to velocity, double limb support time, stance time, step length, and foot rotation (all Ps < 0.05). Overweight participants with lower arches had lower velocities and higher double limb support times (all Ps < 0.05). The results have implications for aiding an increase in physical activity for overweight adults via intervening in adults’ arch height.


2017 ◽  
Vol 32 (2) ◽  
pp. 161-172 ◽  
Author(s):  
Michael D Lewek ◽  
Carty H Braun ◽  
Clint Wutzke ◽  
Carol Giuliani

Objective: Current rehabilitation to improve gait symmetry following stroke is based on one of two competing motor learning strategies: minimizing or augmenting symmetry errors. We sought to determine which of those motor learning strategies best improves overground spatiotemporal gait symmetry. Design: Randomized controlled trial. Setting: Rehabilitation research lab. Subjects: In all, 47 participants (59 ± 12 years old) with chronic hemiparesis post stroke and spatiotemporal gait asymmetry were randomized to error augmentation, error minimization, or conventional treadmill training (control) groups. Interventions: To augment or minimize asymmetry on a step-by-step basis, we developed a responsive, “closed-loop” control system, using a split-belt instrumented treadmill that continuously adjusted the difference in belt speeds to be proportional to the patient’s current asymmetry. Main measures: Overground spatiotemporal asymmetries and gait speeds were collected prior to and following 18 training sessions. Results: Step length asymmetry reduced after training, but stance time did not. There was no group × time interaction. Gait speed improved after training, but was not affected by type of asymmetry, or group. Of those who trained to modify step length asymmetry, there was a moderately strong linear relationship between the change in step length asymmetry and the change in gait speed. Conclusion: Augmenting errors was not superior to minimizing errors or providing only verbal feedback during conventional treadmill walking. Therefore, the use of verbal feedback to target spatiotemporal asymmetry, which was common to all participants, appears to be sufficient to reduce step length asymmetry. Alterations in stance time asymmetry were not elicited in any group.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 232-233
Author(s):  
Oshadi Jayakody ◽  
Monique Breslin ◽  
Richard Beare ◽  
Velandai Srikanth ◽  
Helena Blumen ◽  
...  

Abstract Gait variability is a marker of cognitive decline. However, there is limited understanding of the cortical regions associated with gait variability. We examined associations between regional cortical thickness and gait variability in a population-based sample of older people without dementia. Participants (n=350, mean age 71.9±7.1) were randomly selected from the electoral roll. Variability in step time, step length, step width and double support time (DST) were calculated as the standard deviation of each measure, obtained from the GAITRite walkway. MRI scans were processed through FreeSurfer to obtain cortical thickness of 68 regions. Bayesian regression was used to determine regional associations of mean cortical thickness and thickness ratio (regional thickness/overall mean thickness) with gait variability. Smaller overall cortical thickness was only associated with greater step width and step time variability. Smaller mean thickness in widespread regions important for sensory, cognitive and motor functions were associated with greater step width and step time variability. In contrast, smaller thickness in a few frontal and temporal regions were associated with DST variability and the right cuneus was associated with step length variability. Smaller thickness ratio in frontal and temporal regions important for motor planning, execution and sensory function and, greater thickness ratio in the anterior cingulate was associated with greater variability in all measures. Examining individual cortical regions is important in understanding the relationship between gray matter and gait variability. Cortical thickness ratio highlights that smaller regional thickness relative to global thickness may be important for the consistency of gait.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3517 ◽  
Author(s):  
Anh Ngoc-Lan Huynh ◽  
Ravinesh C. Deo ◽  
Duc-Anh An-Vo ◽  
Mumtaz Ali ◽  
Nawin Raj ◽  
...  

This paper aims to develop the long short-term memory (LSTM) network modelling strategy based on deep learning principles, tailored for the very short-term, near-real-time global solar radiation (GSR) forecasting. To build the prescribed LSTM model, the partial autocorrelation function is applied to the high resolution, 1 min scaled solar radiation dataset that generates statistically significant lagged predictor variables describing the antecedent behaviour of GSR. The LSTM algorithm is adopted to capture the short- and the long-term dependencies within the GSR data series patterns to accurately predict the future GSR at 1, 5, 10, 15, and 30 min forecasting horizons. This objective model is benchmarked at a solar energy resource rich study site (Bac-Ninh, Vietnam) against the competing counterpart methods employing other deep learning, a statistical model, a single hidden layer and a machine learning-based model. The LSTM model generates satisfactory predictions at multiple-time step horizons, achieving a correlation coefficient exceeding 0.90, outperforming all of the counterparts. In accordance with robust statistical metrics and visual analysis of all tested data, the study ascertains the practicality of the proposed LSTM approach to generate reliable GSR forecasts. The Diebold–Mariano statistic test also shows LSTM outperforms the counterparts in most cases. The study confirms the practical utility of LSTM in renewable energy studies, and broadly in energy-monitoring devices tailored for other energy variables (e.g., hydro and wind energy).


Author(s):  
Ruta Jakušonoka ◽  
Zane Pavāre ◽  
Andris Jumtiņš ◽  
Aleksejs Smolovs ◽  
Tatjana Anaņjeva

Abstract Evaluation of the gait of patients after polytrauma is important, as it indicates the ability of patients to the previous activities and work. The aim of our study was to evaluate the gait of patients with lower limb injuries in the medium-term after polytrauma. Three-dimensional instrumental gait analysis was performed in 26 polytrauma patients (16 women and 10 men; mean age 38.6 years), 14 to 41 months after the trauma. Spatio-temporal parameters, motions in pelvis and lower extremities joints in sagittal plane and vertical load ground reaction force were analysed. Gait parameters in polytrauma patients were compared with a healthy control group. Polytrauma patients in the injured side had decreased step length, cadence, hip extension, maximum knee flexion, vertical load ground reaction force, and increased stance time and pelvic anterior tilt; in the uninjured side they had decreased step length, cadence, maximum knee flexion, vertical load ground reaction force and increased stance time (p < 0.05). The use of the three-dimensional instrumental gait analysis in the evaluation of polytrauma patients with lower limb injuries consequences makes it possible to identify the gait disorders not only in the injured, but also in the uninjured side.


Sign in / Sign up

Export Citation Format

Share Document