scholarly journals Chromosome-level genome assembly of the hard-shelled mussel Mytilus coruscus, a widely distributed species from the temperate areas of East Asia

GigaScience ◽  
2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Jin-Long Yang ◽  
Dan-Dan Feng ◽  
Jie Liu ◽  
Jia-Kang Xu ◽  
Ke Chen ◽  
...  

Abstract Background The hard-shelled mussel (Mytilus coruscus) is widely distributed in the temperate seas of East Asia and is an important commercial bivalve in China. Chromosome-level genome information of this species will contribute not only to the development of hard-shelled mussel genetic breeding but also to studies on larval ecology, climate change biology, marine biology, aquaculture, biofouling, and antifouling. Findings We applied a combination of Illumina sequencing, Oxford Nanopore Technologies sequencing, and high-throughput chromosome conformation capture technologies to construct a chromosome-level genome of the hard-shelled mussel, with a total length of 1.57 Gb and a median contig length of 1.49 Mb. Approximately 90.9% of the assemblies were anchored to 14 linkage groups. We assayed the genome completeness using BUSCO. In the metazoan dataset, the present assemblies have 89.4% complete, 1.9% incomplete, and 8.7% missing BUSCOs. Gene modeling enabled the annotation of 37,478 protein-coding genes and 26,917 non-coding RNA loci. Phylogenetic analysis showed that M. coruscus is the sister taxon to the clade including Modiolus philippinarum and Bathymodiolus platifrons. Conserved chromosome synteny was observed between hard-shelled mussel and king scallop, suggesting that this is shared ancestrally. Transcriptomic profiling indicated that the pathways of catecholamine biosynthesis and adrenergic signaling in cardiomyocytes might be involved in metamorphosis. Conclusions The chromosome-level assembly of the hard-shelled mussel genome will provide novel insights into mussel genome evolution and serve as a fundamental platform for studies regarding the planktonic-sessile transition, genetic diversity, and genomic breeding of this bivalve.

2021 ◽  
Author(s):  
Gábor Torma ◽  
Dóra Tombácz ◽  
Norbert Moldován ◽  
Ádám Fülöp ◽  
István Prazsák ◽  
...  

Abstract In this study, we used two long-read sequencing (LRS) techniques, Sequel from the Pacific Biosciences and MinION from Oxford Nanopore Technologies, for the transcriptional characterization of a prototype baculovirus, Autographacalifornica multiple nucleopolyhedrovirus. LRS is able to read full-length RNA molecules, and thereby to distinguish between transcript isoforms, mono- and polycistronic RNAs, and overlapping transcripts. Altogether, we detected 875 transcripts, of which 759 are novel and 116 have been annotated previously. These RNA molecules include 41 novel putative protein coding transcript (each containing 5’-truncated in-frame ORFs), 14 monocistronic transcripts, 99 multicistronic RNAs, 101 non-coding RNA, and 504 length isoforms. We also detected RNA methylation in 12 viral genes and RNA hyper-editing in the longer 5’-UTR transcript isoform of ORF 19 gene.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Baohua Chen ◽  
Zhixiong Zhou ◽  
Qiaozhen Ke ◽  
Yidi Wu ◽  
Huaqiang Bai ◽  
...  

Abstract Larimichthys crocea is an endemic marine fish in East Asia that belongs to Sciaenidae in Perciformes. L. crocea has now been recognized as an “iconic” marine fish species in China because not only is it a popular food fish in China, it is a representative victim of overfishing and still provides high value fish products supported by the modern large-scale mariculture industry. Here, we report a chromosome-level reference genome of L. crocea generated by employing the PacBio single molecule sequencing technique (SMRT) and high-throughput chromosome conformation capture (Hi-C) technologies. The genome sequences were assembled into 1,591 contigs with a total length of 723.86 Mb and a contig N50 length of 2.83 Mb. After chromosome-level scaffolding, 24 scaffolds were constructed with a total length of 668.67 Mb (92.48% of the total length). Genome annotation identified 23,657 protein-coding genes and 7262 ncRNAs. This highly accurate, chromosome-level reference genome of L. crocea provides an essential genome resource to support the development of genome-scale selective breeding and restocking strategies of L. crocea.


2019 ◽  
Author(s):  
Xiaoyun Huang ◽  
Yue Song ◽  
Suyu Zhang ◽  
A Yunga ◽  
Mengqi Zhang ◽  
...  

AbstractChelmon rostratus (Teleostei, Perciformes, Chaetodontidae) is a copperband butterflyfish. As an ornamental fish, the genome information for this species might help understanding the genome evolution of Chaetodontidae and adaptation/evolution of coral reef fish.In this study, using the stLFR co-Barcode reads data, we assembled a genome of 638.70 Mb in size with contig and scaffold N50 sizes of 294.41 kb and 2.61 Mb, respectively. 94.40% of scaffold sequences were assigned to 24 chromosomes using Hi-C data and BUSCO analysis showed that 97.3% (2,579) of core genes were found in our assembly. Up to 21.47 % of the genome was found to be repetitive sequences and 21,375 protein-coding genes were annotated. Among these annotated protein-coding genes, 20,163 (94.33%) proteins were assigned with possible functions.As the first genome for Chaetodontidae family, the information of these data helpfully to improve the essential to the further understanding and exploration of marine ecological environment symbiosis with coral and the genomic innovations and molecular mechanisms contributing to its unique morphology and physiological features.


2020 ◽  
Vol 10 (11) ◽  
pp. 3907-3919
Author(s):  
Alison D. Scott ◽  
Aleksey V. Zimin ◽  
Daniela Puiu ◽  
Rachael Workman ◽  
Monica Britton ◽  
...  

The giant sequoia (Sequoiadendron giganteum) of California are massive, long-lived trees that grow along the U.S. Sierra Nevada mountains. Genomic data are limited in giant sequoia and producing a reference genome sequence has been an important goal to allow marker development for restoration and management. Using deep-coverage Illumina and Oxford Nanopore sequencing, combined with Dovetail chromosome conformation capture libraries, the genome was assembled into eleven chromosome-scale scaffolds containing 8.125 Gbp of sequence. Iso-Seq transcripts, assembled from three distinct tissues, were used as evidence to annotate a total of 41,632 protein-coding genes. The genome was found to contain, distributed unevenly across all 11 chromosomes and in 63 orthogroups, over 900 complete or partial predicted NLR genes, of which 375 are supported by annotation derived from protein evidence and gene modeling. This giant sequoia reference genome sequence represents the first genome sequenced in the Cupressaceae family, and lays a foundation for using genomic tools to aid in giant sequoia conservation and management.


2020 ◽  
Author(s):  
Yun Sun ◽  
Dongdong Zhang ◽  
Jianzhi Shi ◽  
Guisen Chen ◽  
Ying Wu ◽  
...  

AbstractCromileptes altivelas that belongs to Serranidae in the order Perciformes, is widely distributed throughout the tropical waters of the Indo-West Pacific regions. Due to their excellent food quality and abundant nutrients, it has become a popular marine food fish with high market values. Here, we reported a chromosome-level genome assembly and annotation of the humpback grouper genome using more than 103X PacBio long-reads and high-throughput chromosome conformation capture (Hi-C) technologies. The N50 contig length of the assembly is as large as 4.14 Mbp, the final assembly is 1.07 Gb with N50 of scaffold 44.78 Mb, and 99.24% of the scaffold sequences were anchored into 24 chromosomes. The high-quality genome assembly also showed high gene completeness with 27,067 protein coding genes and 3,710 ncRNAs. This high accurate genome assembly and annotation will not only provide an essential genome resource for C. altivelas breeding and restocking, but will also serve as a key resource for studying fish genomics and genetics.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Xuchen Yang ◽  
Minghui Kang ◽  
Yanting Yang ◽  
Haifeng Xiong ◽  
Mingcheng Wang ◽  
...  

AbstractThe deciduous Chinese tupelo (Nyssa sinensis Oliv.) is a popular ornamental tree for the spectacular autumn leaf color. Here, using single-molecule sequencing and chromosome conformation capture data, we report a high-quality, chromosome-level genome assembly of N. sinensis. PacBio long reads were de novo assembled into 647 polished contigs with a total length of 1,001.42 megabases (Mb) and an N50 size of 3.62 Mb, which is in line with genome sizes estimated using flow cytometry and the k-mer analysis. These contigs were further clustered and ordered into 22 pseudo-chromosomes based on Hi-C data, matching the chromosome counts in Nyssa obtained from previous cytological studies. In addition, a total of 664.91 Mb of repetitive elements were identified and a total of 37,884 protein-coding genes were predicted in the genome of N. sinensis. All data were deposited in publicly available repositories, and should be a valuable resource for genomics, evolution, and conservation biology.


2020 ◽  
Author(s):  
Xiao Du ◽  
Xiaoning Hong ◽  
Guangyi Fan ◽  
Xiaoyun Huang ◽  
Shuai Sun ◽  
...  

AbstractThe order Characiformes is one of the largest components of the freshwater teleost fauna inhabiting exclusively in South America and Africa with great ecological and economical significance. Yet, quite limited genomic resources are available to study this group and their transatlantic vicariance. In this study we present a chromosome-level genome assembly of the African pike (Hepsetus odoe), a representative member of the African Characiformes. To this end, we generated 119, 11, and 67 Gb reads using the single tube long fragment read (stLFR), Oxford Nanopore, and Hi-C sequencing technologies, respectively. We obtained an 862.1 Mb genome assembly with the contig and scaffold N50 of 347.4 kb and 25.8 Mb, respectively. Hi-C sequencing produced 29 chromosomes with 742.5 Mb, representing 86.1% of the genome. 24,314 protein-coding genes were predicted and 23,999 (98.7%) genes were functionally annotated. The chromosomal-scale genome assembly will be useful for functional and evolutionary studies of the African pike and promote the study of Characiformes speciation and evolution.


GigaScience ◽  
2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Fanming Meng ◽  
Zhuoying Liu ◽  
Han Han ◽  
Dmitrijs Finkelbergs ◽  
Yangshuai Jiang ◽  
...  

Abstract Background Blowflies (Diptera: Calliphoridae) are the most commonly found entomological evidence in forensic investigations. Distinguished from other blowflies, Aldrichina grahami has some unique biological characteristics and is a species of forensic importance. Its development rate, pattern, and life cycle can provide valuable information for the estimation of the minimum postmortem interval. Findings Herein we provide a chromosome-level genome assembly of A. grahami that was generated by Pacific BioSciences sequencing platform and chromosome conformation capture (Hi-C) technology. A total of 50.15 Gb clean reads of the A. grahami genome were generated. FALCON and Wtdbg were used to construct the genome of A. grahami, resulting in an assembly of 600 Mb and 1,604 contigs with an N50 size of 1.93 Mb. We predicted 12,823 protein-coding genes, 99.8% of which was functionally annotated on the basis of the de novo genome (SRA: PRJNA513084) and transcriptome (SRA: SRX5207346) of A. grahami. According to the co-analysis with 11 other insect species, clustering and phylogenetic reconstruction of gene families were performed. Using Hi-C sequencing, a chromosome-level assembly of 6 chromosomes was generated with scaffold N50 of 104.7 Mb. Of these scaffolds, 96.4% were anchored to the total A. grahami genome contig bases. Conclusions The present study provides a robust genome reference for A. grahami that supplements vital genetic information for nonhuman forensic genomics and facilitates the future research of A. grahami and other necrophagous blowfly species used in forensic medicine.


2021 ◽  
Author(s):  
Shengjun Bai ◽  
Hainan Wu ◽  
Jinpeng Zhang ◽  
Zhiliang Pan ◽  
Wei Zhao ◽  
...  

Abstract Populus deltoides has important ecological and economic values, widely used in poplar breeding programs due to its superior characteristics such as rapid growth and resistance to disease. Although the genome sequence of P. deltoides WV94 is available, the assembly is fragmented. Here, we reported an improved chromosome-level assembly of the P. deltoides cultivar I-69 by combining Nanopore sequencing and chromosome conformation capture (Hi-C) technologies. The assembly was 429.3 Mb in size and contained 657 contigs with a contig N50 length of 2.62 Mb. Hi-C scaffolding of the contigs generated 19 chromosome-level sequences, which covered 97.4% (418 Mb) of the total assembly size. Moreover, repetitive sequences annotation showed that 39.28% of the P. deltoides genome was composed of interspersed elements, including retroelements (23.66%), DNA transposons (6.83%), and unclassified elements (8.79%). We also identified a total of 44 362 protein-coding genes in the current P. deltoides assembly. Compared with the previous genome assembly of P. deltoides WV94, the current assembly had some significantly improved qualities: the contig N50 increased 3.5-fold and the proportion of gaps decreased from 3.2% to 0.08%. This high-quality, well-annotated genome assembly provides a reliable genomic resource for identifying genome variants among individuals, mining candidate genes that control growth and wood quality traits, and facilitating further application of genomics-assisted breeding in populations related to P. deltoides.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhixiong Zhou ◽  
Bo Liu ◽  
Baohua Chen ◽  
Yue Shi ◽  
Fei Pu ◽  
...  

Abstract Takifugu bimaculatus is a native teleost species of the southeast coast of China where it has been cultivated as an important edible fish in the last decade. Genetic breeding programs, which have been recently initiated for improving the aquaculture performance of T. bimaculatus, urgently require a high-quality reference genome to facilitate genome selection and related genetic studies. To address this need, we produced a chromosome-level reference genome of T. bimaculatus using the PacBio single molecule sequencing technique (SMRT) and High-through chromosome conformation capture (Hi-C) technologies. The genome was assembled into 2,193 contigs with a total length of 404.21 Mb and a contig N50 length of 1.31 Mb. After chromosome-level scaffolding, 22 chromosomes with a total length of 371.68 Mb were constructed. Moreover, a total of 21,117 protein-coding genes and 3,471 ncRNAs were annotated in the reference genome. The highly accurate, chromosome-level reference genome of T. bimaculatus provides an essential genome resource for not only the genome-scale selective breeding of T. bimaculatus but also the exploration of the evolutionary basis of the speciation and local adaptation of the Takifugu genus.


Sign in / Sign up

Export Citation Format

Share Document