scholarly journals Reduced ice mass loss and three-dimensional viscoelastic deformation in northern Antarctic Peninsula inferred from GPS

2020 ◽  
Vol 222 (2) ◽  
pp. 1013-1022 ◽  
Author(s):  
Nahidul Hoque Samrat ◽  
Matt A King ◽  
Christopher Watson ◽  
Andrew Hooper ◽  
Xianyao Chen ◽  
...  

SUMMARY We consider the viscoelastic rheology of the solid Earth under the Antarctic Peninsula due to ice mass loss that commenced after the breakup of the Larsen-B ice shelf. We extend the previous analysis of nearby continuous GPS time-series to include five additional years and the additional consideration of the horizontal components of deformation. They show strong uplift from ∼2002 to 2011 followed by reduced uplift rates to 2018. Modelling the GPS-derived uplift as a viscoelastic response to ongoing regional ice unloading from a new ice model confirms earlier estimates of low upper-mantle viscosities of ∼0.3–3 × 1018 Pa s in this region but allows a wide range of elastic lithosphere thickness. The observed and modelled north coordinate component shows little nonlinear variation due to the location of ice mass change to the east of the GPS sites. However, comparison of the observed and modelled east coordinate component constrains the upper-mantle viscosity to be less than ∼9 × 1018 Pa s, consistent with the viscosity range suggested by the uplift rates alone and providing important, largely independent, confirmation of that result. Our horizontal analysis showed only marginal sensitivity to modelled lithospheric thickness. The results for the horizontal components are sensitive to the adopted plate rotation model, with the estimate based on ITRF2014 suggesting that the sum of residual plate motion and pre-2002 glacial isostatic adjustment is likely less than ∼±0.5 mm yr−1 in the east component.

2020 ◽  
Author(s):  
Douglas Wiens ◽  
Andrew Lloyd ◽  
Weisen Shen ◽  
Andrew Nyblade ◽  
Richard Aster ◽  
...  

<p>Upper mantle viscosity structure and lithospheric thickness control the solid Earth response to variations in ice sheet loading. These parameters vary significantly across Antarctica, leading to strong regional differences in the timescale of glacial isostatic adjustment (GIA), with important implications for ice sheet models.  We estimate upper mantle viscosity structure and lithospheric thickness using two new seismic models for Antarctica, which take advantage of temporary broadband seismic stations deployed across Antarctica over the past 18 years. Shen et al. [2018] use receiver functions and Rayleigh wave velocities from earthquakes and ambient noise to develop a higher resolution model for the upper 200 km beneath Central and West Antarctica, where most of the seismic stations have been deployed. Lloyd et al [2019] use full waveform adjoint tomography to invert three-component earthquake seismograms for a radially anisotropic model covering Antarctica and adjacent oceanic regions to 800 km depth. We estimate the mantle viscosity structure from seismic structure using laboratory-derived relationships between seismic velocity, temperature, and rheology. Choice of parameters for this mapping is guided in part by recent regional estimates of mantle viscosity from geodetic measurements. We also describe and compare several different methods of estimating lithospheric thickness from seismic constraints.</p><p>The mantle viscosity estimates indicate regional variations of several orders of magnitude, with extremely low viscosity (< 10<sup>19</sup> Pa s) beneath the Amundsen Sea Embayment (ASE) and the Antarctic Peninsula, consistent with estimates from GIA models constrained by GPS data.  Lithospheric thickness is also highly variable, ranging from around 60 km in parts of West Antarctica to greater than 200 km beneath central East Antarctica. In East Antarctica, several prominent regions such as Dronning Maude Land and the Lambert Graben show much thinner lithosphere, consistent with Phanerozoic tectonic activity and lithospheric disruption. Thin lithosphere and low viscosity between the ASE and the Antarctic Peninsula likely result from the thermal effects of the slab window as the Phoenix-Antarctic plate boundary migrated northward during the Cenozoic. Low viscosity regions beneath the ASE and Marie Byrd Land coast connect to an offshore anomaly at depths of ~ 250 km, suggesting larger-scale thermal and geodynamic processes that may be linked to the initial Cretaceous rifting of New Zealand and Antarctica. Low mantle viscosity results in a characteristic GIA time scale on the order of several hundred years, such that isostatic adjustment occurs on the same time scale as grounding line retreat.  Thus the associated rebound may lessen the effect of the marine ice sheet instability proposed for the ASE region. </p>


Solid Earth ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 447-459 ◽  
Author(s):  
H. Steffen ◽  
G. Kaufmann ◽  
R. Lampe

Abstract. During the last glacial maximum, a large ice sheet covered Scandinavia, which depressed the earth's surface by several 100 m. In northern central Europe, mass redistribution in the upper mantle led to the development of a peripheral bulge. It has been subsiding since the begin of deglaciation due to the viscoelastic behaviour of the mantle. We analyse relative sea-level (RSL) data of southern Sweden, Denmark, Germany, Poland and Lithuania to determine the lithospheric thickness and radial mantle viscosity structure for distinct regional RSL subsets. We load a 1-D Maxwell-viscoelastic earth model with a global ice-load history model of the last glaciation. We test two commonly used ice histories, RSES from the Australian National University and ICE-5G from the University of Toronto. Our results indicate that the lithospheric thickness varies, depending on the ice model used, between 60 and 160 km. The lowest values are found in the Oslo Graben area and the western German Baltic Sea coast. In between, thickness increases by at least 30 km tracing the Ringkøbing-Fyn High. In Poland and Lithuania, lithospheric thickness reaches up to 160 km. However, the latter values are not well constrained as the confidence regions are large. Upper-mantle viscosity is found to bracket [2–7] × 1020 Pa s when using ICE-5G. Employing RSES much higher values of 2 × 1021 Pa s are obtained for the southern Baltic Sea. Further investigations should evaluate whether this ice-model version and/or the RSL data need revision. We confirm that the lower-mantle viscosity in Fennoscandia can only be poorly resolved. The lithospheric structure inferred from RSES partly supports structural features of regional and global lithosphere models based on thermal or seismological data. While there is agreement in eastern Europe and southwest Sweden, the structure in an area from south of Norway to northern Germany shows large discrepancies for two of the tested lithosphere models. The lithospheric thickness as determined with ICE-5G does not agree with the lithosphere models. Hence, more investigations have to be undertaken to sufficiently determine structures such as the Ringkøbing-Fyn High as seen with seismics with the help of glacial isostatic adjustment modelling.


2013 ◽  
Vol 5 (2) ◽  
pp. 2483-2507
Author(s):  
H. Steffen ◽  
G. Kaufmann ◽  
R. Lampe

Abstract. During the last glacial maximum, a large ice sheet covered Scandinavia, and the Earth's surface was depressed by several 100 m. Beyond the limit of this Fennoscandian ice sheet, mass redistribution in the upper mantle led to the development of peripheral bulges around the glaciated region. These once uplifted areas subside since the begin of deglaciation due to the viscoelastic behavior of the mantle. Parts of this subsiding region are located in northern central Europe in the coastal parts of Denmark, Germany and Poland. We analyze relative sea-level (RSL) data of these regions to determine the lithospheric thickness and radial mantle viscosity structure for distinct regional RSL subsets. We load a one-dimensional Maxwell-viscoelastic earth model with a global ice-load history model of the last glaciation. We test two commonly used ice histories, RSES from the Australian National University and Ice-5G from the University of Toronto. Our results indicate that the lithospheric thickness varies, depending on the ice model used, between 60 and 160 km. The lowest values are found in the Oslo Graben area and the western German Baltic Sea coast. In between, thickness increases by at least 30 km tracing the Fyn High. In Poland, lithospheric thickness values up to 160 km are reached. However, the latter values are not well constrained due to a low number of RSL data from the Polish area. Upper-mantle viscosity is found to bracket [2–7] × 1020 Pa s when using Ice-5G. Employing RSES much higher values of 2 × 1021 Pa s yield for the southern Baltic Sea, which suggests a revision of this ice-model version. We confirm that the lower-mantle viscosity in Fennoscandia can only be poorly resolved. The lithospheric structure inferred partly supports structural features of regional and global lithosphere models based on thermal or seismological data. While there is agreement in eastern Europe and southwest Sweden, the structure in an area from south of Norway to northern Germany shows large discrepancies for two of the tested models. It thus remains challenging to sufficiently determine the Fyn High as seen with seismics with the help of glacial isostatic adjustment modelling.


2019 ◽  
Author(s):  
Marc Rovira-Navarro ◽  
Wouter van der Wal ◽  
Valentina R. Barletta ◽  
Bart C. Root ◽  
Louise Sandberg Sørensen

Abstract. The Barents Sea is situated on a continental margin and was home to a large ice sheet at the Last Glacial Maximum. Studying the solid Earth response to the removal of this ice sheet (Glacial Isostatic Adjustment, GIA) can give insight in the sub-surface structure in this region. However, because the region is currently covered by ocean, uplift measurements from the center of the former ice sheet are not available, but GRACE data has been shown to be able to constrain GIA. Here we analyze GRACE data for the period 2003–2015 in the Barents Sea and use it to constrain a GIA models for the region. We study the effect of uncertainty in non-tidal ocean mass models that are used to correct GRACE data and find that it is not negligible and should be taken into account when studying solid Earth signals in oceanic areas from GRACE. We compare the obtained gravity rates with GIA model predictions for different ice deglaciation chronologies and infer a lower bound for the Earth's upper mantle viscosity of 2·1020 Pa·s. Following a similar procedure for Fennoscandia we find that the preferred upper mantle viscosity there is a factor 2 larger than in the Barents Sea for a range of lithospheric thickness values. This factor is shown to be consistent with the ratio of viscosities derived for both regions from global seismic models. The viscosity difference can serve as constraint for geodynamic models of the area.


2021 ◽  
Author(s):  
Harriet Lau ◽  
Jacqueline Austermann ◽  
Benjamin Holtzman ◽  
Cameron Book ◽  
Christopher Havlin ◽  
...  

<p>Studies of glacial isostatic adjustment (GIA) often use paleoshorelines and present-day deformation to constrain the viscosity of the mantle and the thickness of the lithosphere. However, different studies focused on similar locations have resulted in different estimates of these physical properties even when considering the same model of viscoelastic deformation. We argue that these different estimates infer apparent viscosities and apparent lithospheric thicknesses, dependent on the timescale of deformation. We use recently derived relationships between these frequency dependent apparent quantities and the underlying thermodynamic conditions to produce predictions of mantle viscosity and lithospheric thickness across a broad spectrum of geophysical timescales for three locations (Western North America, Amundsen Sea, and the Antarctic Peninsula). Our predictions require the self-consistent consideration of elastic, viscous, and transient deformation and also include non-linear steady state deformation, which have been determined by several laboratories. We demonstrate that these frequency dependent predictions of apparent lithospheric thickness and viscosity display a significant range and that they align to first order with estimates from GIA studies on different timescales. Looking forward, we suggest that observationally based studies could move towards a framework of determining the frequency trend in apparent quantities – rather than single, frequency independent values of viscosity – to gain deeper insight into the rheological behavior of Earth materials.</p>


2002 ◽  
Vol 39 (10) ◽  
pp. 1517-1525 ◽  
Author(s):  
Yike Liu ◽  
Xu Chang ◽  
Futian Liu ◽  
Ye Zheng

Three-dimensional velocity images of the crust and upper mantle beneath the Kang–Dian Tethyan tectonic zone in China are constructed using P-wave travel-time residuals of earthquakes. The Kang–Dian Tethyan tectonic zone is a transitional zone in tectonic structures and an important topographic border line. It is also a zone of concentration of shallow-focus earthquakes. The imaging results indicate that there is a significant lateral heterogeneity in the crust and upper mantle beneath the Kang–Dian Tethyan tectonic zone in China. The velocity images of the upper crust show features closely related to the tectonic features on the surface. A low-velocity layer exists in a very wide range of the mid-crust. Almost all of the major earthquakes took place in the transition strips between high- and low-velocity zones in the crust above 20 km depth. From the velocity images at 20+0 and 50+0 km depth, respectively, we find that the epicenters of strong earthquakes with magnitude larger than 6.0 are almost entirely distributed in the low-velocity zones or on their boundaries.


2020 ◽  
Author(s):  
Halldór Geirsson ◽  
Gudmundur Valsson ◽  
Benedikt G. Ófeigsson ◽  
Erik Sturkell ◽  
Thora Arnadottir ◽  
...  

<p>The two most widespread geodynamic signals in Iceland are caused by glacio isostatic adjustment (GIA; up to 4.5 cm/yr vertical motion) and tectonic plate spreading (approximately 1.9 cm/yr horizontal motion). GPS measurements of crustal deformation started in Iceland in 1986 and annually tens to hundreds of benchmarks are re-measured. Many of these surveys are on local scales, but the ISNET campaigns in 1993, 2004, and 2016 are the only island-wide efforts. Continuous GPS (cGPS) measurements started in 1995 and now over 100 cGPS stations are running. The cGPS allows for excellent quantification of seasonal variations in position with amplitude up to several cm closest to the glaciers, driven mainly by seasonal snowload. Frequent observations also help to observe temporal changes in uplift rates and correlate to glacier mass balance. In recent years InSAR has been applied to obtain both local signals (e.g., due to glacial surges) and island-wide estimates of GIA and plate motion. However, InSAR does not work under the glaciers where we expect the largest uplift. Regular GPS measurements at several nunataks on Vatnajökull started in 2008 and provide the only intra-glacier GIA observations in Iceland. Going further backwards in time is a challenge and relies on local levelling where relative uplift rates can be compared to current relative uplift rates to infer the temporal evolution.</p><p>During 1993-2004 the average observed uplift rates reached at most around 2 cm/yr and were likely at its lowest in the early 1990s, lower than during 1959-1991. During 2004-2010 the uplift rates increased on average by 70% compared to the previous time period. A thin layer of ash from the 2010 Eyjafjallajökull eruption enhanced the melting rates and is clearly seen as enhanced uplift rates during 2010-2012. Until 2014 the uplift rates remained high. In 2014 the average uplift rates lowered by around 20%. Comparable changes are observed in the horizontal deformation field. Overall, recent changes in GIA broadly follow changes in climate and mass balance. The first part of the 90s was cold and glaciers in Iceland were overall in equilibrium or gaining a bit of mass. After 1995 the glaciers started losing considerable mass every year. From 2011 the mass loss decreased; in 2015 there was a net mass gain, and in 2017 and 2018 the mass balance was close to equilibrium. The highly variable deformation rates call for a re-evaluation of the current GIA models, working towards a time-dependent response that can be applied to regional deformation studies.</p>


2020 ◽  
Author(s):  
Grace Nield ◽  
Matt King ◽  
Achraf Koulali ◽  
Nahidul Samrat ◽  
Rebekka Steffen

<p>Large earthquakes in the vicinity of Antarctica have the potential to cause post-seismic deformation on the continent, affecting measurements of displacement and gravity field change from GRACE or those attempting to constrain models of glacial isostatic adjustment.</p><p>In November 2013 a magnitude 7.7 strike-slip earthquake occurred in the Scotia Sea around 650 km from the northern tip of the Antarctic Peninsula. GPS coordinate time series from the Peninsula region show a change in rate after this event indicating a far-field post-seismic deformation signal is present. At these far-field locations, the effects of fault after-slip are likely negligible and hence we consider the deformation to be due to post-seismic viscoelastic deformation. Here we use a global spherical finite element model to investigate the extent of post-seismic viscoelastic deformation in the northern Antarctic Peninsula. We investigate possible 1D earth models that can fit the GPS data and consider the effect of including a simple 3D earth structure in the region. These results, combined with previous results showing East Antarctica is still deforming following 1998 M<sub>w</sub> 8.2 intraplate earthquake, suggest that much of Antarctica is deforming due to recent post-seismic deformation.</p>


Sign in / Sign up

Export Citation Format

Share Document