Three-dimensional velocity images beneath the Kang–Dian Tethyan tectonic zone of China

2002 ◽  
Vol 39 (10) ◽  
pp. 1517-1525 ◽  
Author(s):  
Yike Liu ◽  
Xu Chang ◽  
Futian Liu ◽  
Ye Zheng

Three-dimensional velocity images of the crust and upper mantle beneath the Kang–Dian Tethyan tectonic zone in China are constructed using P-wave travel-time residuals of earthquakes. The Kang–Dian Tethyan tectonic zone is a transitional zone in tectonic structures and an important topographic border line. It is also a zone of concentration of shallow-focus earthquakes. The imaging results indicate that there is a significant lateral heterogeneity in the crust and upper mantle beneath the Kang–Dian Tethyan tectonic zone in China. The velocity images of the upper crust show features closely related to the tectonic features on the surface. A low-velocity layer exists in a very wide range of the mid-crust. Almost all of the major earthquakes took place in the transition strips between high- and low-velocity zones in the crust above 20 km depth. From the velocity images at 20+0 and 50+0 km depth, respectively, we find that the epicenters of strong earthquakes with magnitude larger than 6.0 are almost entirely distributed in the low-velocity zones or on their boundaries.

1977 ◽  
Vol 67 (3) ◽  
pp. 693-711 ◽  
Author(s):  
Charles A. Langston ◽  
David E. Blum

abstract Simultaneous modeling of source parameters and local layered earth structure for the April 29, 1965, Puget Sound earthquake was done using both ray and layer matrix formulations for point dislocations imbedded in layered media. The source parameters obtained are: dip 70° to the east, strike 344°, rake −75°, 63 km depth, average moment of 1.4 ± 0.6 × 1026 dyne-cm, and a triangular time function with a rise time of 0.5 sec and falloff of 2.5 sec. An upper mantle and crustal model for southern Puget Sound was determined from inferred reflections from interfaces above the source. The main features of the model include a distinct 15-km-thick low-velocity zone with a 2.5-km/sec P-wave-velocity contrast lower boundary situated at approximately 56-km depth. Ray calculations which allow for sources in dipping structure indicate that the inferred high contrast value can trade off significantly with interface dip provided the structure dips eastward. The effective crustal model is less than 15 km thick with a substantial sediment section near the surface. A stacking technique using the instantaneous amplitude of the analytic signal is developed for interpreting short-period teleseismic observations. The inferred reflection from the base of the low-velocity zone is recovered from short-period P and S waves. An apparent attenuation is also observed for pP from comparisons between the short- and long-period data sets. This correlates with the local surface structure of Puget Sound and yields an effective Q of approximately 65 for the crust and upper mantle.


1966 ◽  
Vol 56 (5) ◽  
pp. 1009-1044 ◽  
Author(s):  
L. Knopoff ◽  
S. Mueller ◽  
W. L. Pilant

Abstract The phase velocity method has been applied to the problem of the determination of the crust and upper mantle under the western Alpine crest and in the Alpine foreland to the north. An extensive data processing package has been designed so that Fourier analysis is applied to the determination of phase velocities, rather than the more usual peak-and-trough method. Effects of contamination by multipath interference, manifested in beats, can be minimized. Advantage is made of apparent azimuthal variations in phase velocity to yield a further refinement in the method whereby the tripartite results are assigned to discrete lines in the network rather than to the area swept out by the wave front. The results show that a well-developed low-velocity channel for S is found throughout the region with a velocity of S in the channel of 4.2 km/sec. The top of the channel is at about 80 km depth. A new analysis of P-wave data shows a likely horizon for reflections at 220 km; this is taken to be the depth of the lower boundary to the channel. The mean P-wave velocity in the lower crust is at least as high as 6.7 km/sec. The crustal and upper mantle structure vary significantly over relatively short distances. The Mohorovičić discontinuity is deepest under the crest of the Alps and shoals to the north and west; a well developed root has been found.


1992 ◽  
Vol 29 (7) ◽  
pp. 1530-1548 ◽  
Author(s):  
B. C. Zelt ◽  
R. M. Ellis ◽  
R. M. Clowes ◽  
E. R. Kanasewich ◽  
I. Asudeh ◽  
...  

As part of the Lithoprobe Southern Cordillera transect, seismic refraction data were recorded along a 330 km long strike profile in the Intermontane belt. An iterative combination of two-dimensional traveltime inversion and amplitude forward modelling was used to interpret crust and upper mantle P-wave velocity structure. This region is characterized by (i) a thin near-surface layer with large variations in velocity between 2.8 and 5.4 km/s, and low-velocity regions that correlate well with surface expressions of Tertiary sedimentary and volcanic rocks; (ii) an upper and middle crust with low average velocity gradient, possibly a weak low-velocity zone, and lateral velocity variations between 6.0 and 6.4 km/s; (iii) a distinctive lower crust characterized by significantly higher average velocities relative to midcrustal values beginning at 23 km depth, approximately 8 km thick with average velocities of 6.5 and 6.7 km/s at top and base; (iv) a depth to Moho, as defined by wide-angle reflections, that averages 33 km with variations up to 2 km; and (v) a Moho transition zone of depth extent 1–3 km, below which lies the upper mantle with velocities decreasing from 7.9 km/s in the south to 7.7 km/s in the north. Where the refraction line obliquely crosses a Lithoprobe deep seismic-reflection profile, good agreement is obtained between the interpreted reflection section and the derived velocity structure model. In particular, depths to wide-angle reflectors in the upper crust agree with depths to prominent reflection events, and Moho depths agree within 1 km. From this comparison, the upper and middle crust probably comprise the upper part of the Quesnellia terrane. The lower crust from the refraction interpretation does not show the division into two components, parautochthonous and cratonic North America, that is inferred from the reflection data, indicating that their physical properties are not significantly different within the resolution of the refraction data. Based on these interpretations, the lower lithosphere of Quesnellia is absent and presumably was recycled in the mantle. At a depth of ~ 16 km below the Moho, an upper mantle reflector may represent the base of the present lithosphere.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Haiou Li ◽  
Xiwei Xu ◽  
Wentao Ma ◽  
Ronghua Xie ◽  
Jingli Yuan ◽  
...  

Three-dimensional P wave velocity models under the Zipingpu reservoir in Longmenshan fault zone are obtained with a resolution of 2 km in the horizontal direction and 1 km in depth. We used a total of 8589 P wave arrival times from 1014 local earthquakes recorded by both the Zipingpu reservoir network and temporary stations deployed in the area. The 3-D velocity images at shallow depth show the low-velocity regions have strong correlation with the surface trace of the Zipingpu reservoir. According to the extension of those low-velocity regions, the infiltration depth directly from the Zipingpu reservoir itself is limited to 3.5 km depth, while the infiltration depth downwards along the Beichuan-Yingxiu fault in the study area is about 5.5 km depth. Results show the low-velocity region in the east part of the study area is related to the Proterozoic sedimentary rocks. The Guanxian-Anxian fault is well delineated by obvious velocity contrast and may mark the border between the Tibetan Plateau in the west and the Sichuan basin in the east.


1971 ◽  
Vol 61 (5) ◽  
pp. 1441-1451
Author(s):  
R. D. Adams

abstract Early reflections of the phase P′P′ recorded at North American seismograph stations from nuclear explosions in Novaya Zemlya are used to examine the crust and upper mantle beneath a region of eastern Antarctica. Many reflections are observed from depths less than 120 km, indicating considerable inhomogeneity at these depths in the Earth. No regular horizons were found throughout the area, but some correlation was observed among reflections at closely-spaced stations, and, at many stations, reflections were observed from depths of between 60 and 80 km, corresponding to a likely upper boundary of the low-velocity channel. Deeper reflections were found at depths of near 420 and 650 km. The latter boundary was particularly well-observed and appears to be sharply defined at a depth that is constant to within a few kilometers. The boundary at 420 km is not so well defined by reflections of P′P′, but reflects well longer-period PP waves, arriving at wider angles of incidence. This boundary appears to be at least as pronounced, but not so sharp as that near 650 km. The deep structure beneath Antarctica presents no obvious difference from that beneath other continental areas.


1976 ◽  
Vol 66 (2) ◽  
pp. 501-524
Author(s):  
Keiiti Aki ◽  
Anders Christoffersson ◽  
Eystein S. Husebye

abstract Using P-wave residuals for teleseismic events observed at the Montana Large Aperture Seismic Array (LASA), we have determined the three-dimensional seismic structure of the lithosphere under the array to a depth of 140 km. The root-mean-square velocity fluctuation was found to be at least 3.2 per cent which may be compared to estimate of ca. 2 per cent based on the Chernov random medium theory. The solutions are given by both the generalized inverse and stochastic inverse methods in order to demonstrate the relative merit of different inversion techniques. The most conspicuous feature of the lithosphere under LASA is a low-velocity anomaly in the central and northeast part of the array siting area with the N60°E trend and persisting from the upper crust to depths greater than 100 km. We interpret this low-velocity anomaly as a zone of weakness caused by faulting and shearing associated with the building of the Rocky Mountains.


Sign in / Sign up

Export Citation Format

Share Document