scholarly journals Three-dimensional inversion of magnetotelluric impedance tensor data and full distortion matrix

2015 ◽  
Vol 202 (1) ◽  
pp. 464-481 ◽  
Author(s):  
A. Avdeeva ◽  
M. Moorkamp ◽  
D. Avdeev ◽  
M. Jegen ◽  
M. Miensopust
2011 ◽  
Vol 22 (3) ◽  
pp. 386-395 ◽  
Author(s):  
Changhong Lin ◽  
Handong Tan ◽  
Tuo Tong

Geophysics ◽  
1974 ◽  
Vol 39 (1) ◽  
pp. 56-68 ◽  
Author(s):  
Flavian Abramovici

The impedance tensor corresponding to the magnetotelluric field for a nonisotropic one‐dimensional structure is given in terms of the solutions of a sixth‐order differential system. The conductivity tensor is three‐dimensional. Its components depend upon depth only in an arbitrary manner such that the corresponding matrix is positive definite. The impedance tensor components are found by a numerical integration procedure based on a set of one‐step methods and a variable step‐size to insure a given accuracy in the final result. Calculations were made for three models having sharp boundaries and also transitional layers. The first of these models has a middle layer of high conductivity, sandwiched between two layers of linearly varying conductivity, while in the second model the middle layer has a very low conductivity. In the third model the conductivity tensor is three‐dimensional and is linearly varying in one of the layers.


Geophysics ◽  
2005 ◽  
Vol 70 (1) ◽  
pp. G8-G15 ◽  
Author(s):  
Laust B. Pedersen ◽  
M. Bastani ◽  
L. Dynesius

Radiomagnetotelluric (RMT) (14–250 kHz) combined with controlled-source magnetotelluric (CSMT) (1–12 kHz) measurements were applied to the exploration of groundwater located in sandy formations at depths as great as 20 m below thick clay lenses. A combination of approximately 30 radio frequencies and controlled-source frequencies is essential for penetrating the thick clay layers. The electromagnetic transfer functions of impedance tensor and tipper vectors point toward a structure that is largely two-dimensional, although clear three-dimensional effects can be observed where the sandy formation is close to the surface. The determinant of the impedance tensor was chosen for inversion using two-dimensional models. The final two-dimensional model fits the data to within twice the estimated standard errors, which is considered quite satisfactory, given that typical errors are on the level of 1% on the impedance elements. Comparison with bore-hole results and shallow-reflection seismic sections show that the information delivered by the electromagnetic data largely agrees with the former and provides useful information for interpreting the latter by identifying lithological boundaries between the clay and sand and between the sand and crystalline basement.


Geophysics ◽  
1985 ◽  
Vol 50 (10) ◽  
pp. 1610-1617 ◽  
Author(s):  
Simon Spitz

A serious limitation to conventional data analysis is that the data refer mainly to elongated bodies. When three‐dimensional distortions are present, quantitative interpretation based only on the off‐diagonal elements of the conventionally rotated impedance tensor is inadequate, because these off‐diagonal elements are insensitive to the tensor trace. The impedance tensor eigenstate formulation proposed in the literature defines a complete set of parameters suitable for recognition of three‐dimensionality. Generally, though, the eigenvalues do not stand for the off‐diagonal elements of an impedance tensor measured in a physical coordinate system. It is shown how the eigenvalues are modified when the relationship between coordinate system rotations and the eigenstate formulation is clarified. A generalization of the conventional analysis results, but the rotation angle obtained is neither unique nor complete To improve the situation, two new analytical rotation angles are proposed. These angles define two complete intrinsic coordinate systems suitable for magnetotelluric data analysis when a general three‐dimensional structure is involved.


Geophysics ◽  
2010 ◽  
Vol 75 (1) ◽  
pp. F23-F32 ◽  
Author(s):  
Simona Tripaldi ◽  
Agata Siniscalchi ◽  
Klaus Spitzer

Many efforts have been made to face magnetotelluric (MT) static shift. Impedance tensor analyses give insight to the presence of this feature and allow the determination of some parameters described by the MT distortion matrix. A quantitative determination of the full distortion matrix is, however, still difficult and needs additional measurements. In addition to MT, other electric and electromagnetic methods also are effected by static shift. Using direct current resistivity techniques, e.g., we can determine the static-shift factors in a simpler way because the sources can be controlled. Generally, because the distortion matrix has four entries, four additional quantities have to be determined to describe the static shift completely. They can be achieved, e.g., through measuring two orthogonal electric field components for two orthogonal source configurations. The source electrode spacing, however, has to be sufficiently large to resemble horizontal currents and match the MT plane-wave analog. The procedure at hand extracts the static-shift factors from multielectrode measurements after this condition is met. For the sake of simplicity and demonstration purposes, only inline measurements orthogonal to the strike direction of a 2D model are considered so that the vectorial problem reduces to a scalar one. This procedure is applied to a MT field data set in a regional 2D environment that shows only two additional quantities are necessary to determine the static shift.


Geophysics ◽  
1991 ◽  
Vol 56 (4) ◽  
pp. 496-518 ◽  
Author(s):  
R. W. Groom ◽  
R. C. Bailey

An outcropping hemispherical inhomogeneity embedded in a two‐dimensional (2-D) earth is used to model the effects of three‐dimensional (3-D) near‐surface electromagnetic (EM) “static” distortion. Analytical solutions are first derived for the galvanic electric and magnetic scattering operators of the heterogeneity. To represent the local distortion by 3-D structures of fields which were produced by a large‐scale 2-D structure, these 3-D scattering operators are applied to 2-D electric and magnetic fields derived by numerical modeling to synthesize an MT data set. Synthetic noise is also included in the data. These synthetic data are used to study the parameters recovered by several published methods for decomposing or parameterizing the measured MT impedance tensor. The stability of these parameters in the presence of noise is also examined. The parameterizations studied include the conventional 2-D parameterization (Swift, 1967), Eggers’s (1982) and Spitz’s (1985) eigenstate formulations, LaTorraca et al.’s (1986) SVD decomposition, and the Groom and Bailey (1989) method designed specifically for 3-D galvanic electric scattering. The relationships between the impedance or eigenvalue estimates of each method and the true regional impedances are examined, as are the azimuthal (e.g., regional 2-D strike, eigenvector orientation and local strike) and ellipticity parameters. The 3-D structure causes the conventional 2-D estimates of impedances to be site‐dependent mixtures of the regional impedance responses, with the strike estimate being strongly determined by the orientation of the local current. For strong 3-D electric scattering, the local current polarization azimuth is mainly determined by the local 3-D scattering rather than the regional currents. There are strong similarities among the 2-D rotation estimates of impedance and the eigenvalue estimates of impedance both by Eggers’s and Spitz’s first parameterization as well as the characteristic values of LaTorraca et al. There are striking similarities among the conventional estimate of strike, the orientations given by the Eggers’s, Spitz’s (Q), and LaTorraca et al.’s decompositions, as well as the estimate of local current polarization azimuth given by Groom and Bailey. It was found that one of the ellipticities of Eggers, LaTorraca et al., and Spitz is identically zero for all sites and all periods, indicating that one eigenvalue or characteristic value is linearly polarized. There is strong evidence that this eigenvalue is related to the local current. For these three methods, the other ellipticity differs from zero only when there are significant differences in the phases of the regional 2-D impedances (i.e., strong 2-D inductive effects), implying the second ellipticity indicates a multidimensional inductive response. Spitz’s second parameterization (U), and the Groom and Bailey decomposition, were able to recover information regarding the actual regional 2-D strike and the separate character of the 2-D regional impedances. Unconstrained, both methods can suffer from noise in their ability to resolve structural information especially when the current distortion causes the impedance tensor to be approximately singular. The method of Groom and Bailey, designed specifically for quantifying the fit of the measured tensors to the physics of the parameterization, constraining a model, and resolving parameters, can recover much of the information in the two regional impedances and some information about the local structure.


2018 ◽  
Vol 67 (1) ◽  
pp. 226-261 ◽  
Author(s):  
Shuangxi Ji ◽  
Huai Zhang ◽  
Yanfei Wang ◽  
Liangliang Rong ◽  
Yaolin Shi ◽  
...  

Geophysics ◽  
1982 ◽  
Vol 47 (6) ◽  
pp. 932-937 ◽  
Author(s):  
T. D. Gamble ◽  
W. M. Goubau ◽  
R. Miracky ◽  
J. Clarke

A new method for determining regional strikes from the magnetotelluric impedance tensor Z and tipper T is presented. It involves the minimization of weighted sums of the squared magnitudes of elements of Z or T over all frequencies and all stations of interest. When applied to data from the Mexicali Valley, Baja California around the Cerro Prieto geothermal field for a particular weighting function, the method yielded orientations that agree to within 2.9 degrees for three lines with a total of 16 stations. The consistency of orientations can be attributed in part to the pronounced two‐dimensional (2-D) geologic characteristics of the area, but the techniques also proved stable at stations near three‐dimensional (3-D) inhomogeneities.


Geophysics ◽  
2000 ◽  
Vol 65 (2) ◽  
pp. 452-464 ◽  
Author(s):  
Xiaobo Li ◽  
Behrooz Oskooi ◽  
Laust B. Pedersen

Fractures in the upper part of the crust are pervasive in crystalline areas. They often are aligned and nearly vertical. Magnetotelluric studies carried out in different parts of the world often indicate that the upper brittle part of the crust is electrically anisotropic. One model is that deep fluid‐filled fractures, when observed from the surface, mimic an anisotropic medium. The transfer functions of the controlled‐source tensor magnetotelluric (CSTMT) method contain information from current systems running both parallel and perpendicular to the principal horizontal axes of anisotropy, so that the CSTMT method is capable of detecting azimuthal anisotropy. For the CSTMT method, electric dipoles provide the source field, and hence fields are localized. Thus, the distortion generated by a major conductive anomaly lying outside the induction volume defined by the transmitter and receiver positions will be small. Therefore, one‐dimensional models often may be valid. We have developed a nonlinear least‐squares inversion approach to invert CSTMT data for azimuthal anisotropy in an one‐dimensional layered earth. Near‐surface distortion effects on the impedance tensor are parameterized as a real distortion matrix. The elements of the distortion matrix are incorporated into the model parameters. By using tipper functions which are less distorted by near‐surface structures, near‐surface distortion effects can be removed adequately. One striking feature of our inversion algorithm is that the partial derivatives of the response functions, with respect to model parameters, are given in analytical forms, which results in an efficient computation of the Jacobian matrix. Theoretical studies show good convergence and good resolution of the model parameters. We have applied the inversion scheme to a set of controlled‐source data from the Siljan impact structure in Sweden. The derived models give much better data fits than a corresponding isotropic model.


Sign in / Sign up

Export Citation Format

Share Document