Focal mechanism and stress field in the northeastern Tibetan Plateau: insight into layered crustal deformations

2019 ◽  
Vol 218 (3) ◽  
pp. 2066-2078 ◽  
Author(s):  
Cunrui Han ◽  
Zhouchuan Huang ◽  
Mingjie Xu ◽  
Liangshu Wang ◽  
Ning Mi ◽  
...  

SUMMARY Focal mechanism solutions (FMSs) reflect the stress field underground directly. They provide essential clue for crustal deformations and therefore improve our understanding of tectonic uplift and expansion of the Tibetan Plateau. In this study, we applied generalized Cut and Paste and P-wave first-motion methods to determine 334 FMSs (2.0 ≤ Mw ≤ 6.4) with the data recorded by a new temporary network deployed in the NE Tibetan Plateau by ChinArray project. We then used 1015 FMSs (including 681 published FMSs) to calculate the regional stress field with a damped linear inversion. The results suggest dominant thrust and strike-slip faulting environments in the NE Tibetan Plateau. From the Qilian thrust belt to the Qinling orogen, the maximum horizontal stress orientations (${S_\mathrm{ H}}$) rotate clockwise from NNE to NE, and further to EW, showing a fan-shaped pattern. The derived minimum horizontal stress orientations (${S_\mathrm{ h}}$) are parallel to the aligned fabrics in the mantle lithosphere indicated by shear wave splitting measurements, suggesting vertically coherent deformation in the NE Tibetan Plateau. Beneath the SW Qinling adjacent to the plateau, however, the stress orientations in the shallow and deep crust are different, whereas the deep crustal stress field indicates possible ductile crustal flow or shear.

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Yuki Susukida ◽  
◽  
Kei Katsumata ◽  
Masayoshi Ichiyanagi ◽  
Mako Ohzono ◽  
...  

AbstractThe tectonic stress field was investigated in and around the aftershock area of the Hokkaido Eastern Iburi earthquake (MJMA = 6.7) occurred on 6 September 2018. We deployed 26 temporary seismic stations in the aftershock area for approximately 2 months and located 1785 aftershocks precisely. Among these aftershocks, 894 focal mechanism solutions were determined using the first-motion polarity of P wave from the temporary observation and the permanent seismic networks of Hokkaido University, Japan Meteorological Agency (JMA), and High Sensitivity Seismograph Network Japan (Hi-net). We found that (1) the reverse faulting and the strike-slip faulting are dominant in the aftershock area, (2) the average trend of P- and T-axes is 78° ± 33° and 352° ± 51°, respectively, and (3) the average plunge of P- and T-axes is 25° ± 16° and 44° ± 20°, respectively: the P-axis is close to be horizontal and the T-axis is more vertical than the average of the P-axes. We applied a stress inversion method to the focal mechanism solutions to estimate a stress field in the aftershock area. As a result, we found that the reverse fault type stress field is dominant in the aftershock area. An axis of the maximum principal stress (σ1) has the trend of 72° ± 7° and the dipping eastward of 19° ± 4° and an axis of the intermediate principal stress (σ2) has the trend of 131° ± 73° and the dipping southward of 10° ± 9°, indicating that both of σ1- and σ2-axes are close to be horizontal. An axis of the minimum principal stress (σ3) has the dipping westward of 67° ± 6° that is close to be vertical. The results strongly suggest that the reverse-fault-type stress field is predominant as an average over the aftershock area which is in the western boundary of the Hidaka Collision Zone. The average of the stress ratio R = (σ1 − σ2)/(σ1 − σ3) is 0.61 ± 0.13 in the whole aftershock area. Although not statistically significant, we suggest that R decreases systematically as the depth is getting deep, which is modeled by a quadratic polynomial of depth.


2020 ◽  
Author(s):  
Yuki Susukida ◽  
Kei Katsumata ◽  
Masayoshi Ichiyanagi ◽  
Mako Ohzono ◽  
Hiroshi Aoyama ◽  
...  

Abstract The tectonic stress field was investigated in and around the aftershock area of the Hokkaido Eastern Iburi earthquake (MJMA = 6.7) occurred on 6 September 2018. We deployed 26 temporary seismic stations in the aftershock area for approximately 2 months and located 1785 aftershocks precisely. Among these aftershocks 818 focal mechanism solutions were determined using the first motion polarity of P wave from the temporary observation and the permanent seismic networks of Hokkaido University, Japan Meteorological Agency (JMA), and High Sensitivity Seismograph Network Japan (Hi-net). We found that (1) the reverse faulting and the strike-slip faulting are dominant in the aftershock area, (2) the average azimuths of P- and T-axes are N78° ± 33°E and N3° ± 52°W, respectively, and (3) the average dips of P- and T-axes are 25° ± 16° and 46° ± 20°, respectively: the P-axis is close to be horizontal and the T-axis is close to be vertical. We applied a stress inversion method to the focal mechanism solutions to estimate a stress field in the aftershock area. As a result, we found that the reverse fault type stress field is dominant in the aftershock area. An axis of the maximum principal stress (σ1) has the azimuth of N73° ± 8°E and the dipping eastward of 17° ± 6° and an axis of the medium principal stress (σ2) has the azimuth of N126° ± 91°E and the dipping southward of 16° ± 13°, indicating that both of σ1- and σ2-axes are close to be horizontal. An axis of the minimum principal stress (σ3) has the dipping westward of 64° ± 9° that is close to be vertical. The results strongly suggest that the reverse-fault-type stress field is predominant as an average over the aftershock area which is in the western boundary of the Hidaka Collision Zone. Although the average of the stress ratio is R = 0.6 ± 0.2 in the whole aftershock area, R decreases systematically as the depth is getting deep, which is modeled by a quadratic polynomial of depth.


2006 ◽  
Vol 46 (1) ◽  
pp. 283 ◽  
Author(s):  
E. Nelson ◽  
R. Hillis ◽  
M. Sandiford ◽  
S. Reynolds ◽  
S. Mildren

There have been several studies, both published and unpublished, of the present-day state-of-stress of southeast Australia that address a variety of geomechanical issues related to the petroleum industry. This paper combines present-day stress data from those studies with new data to provide an overview of the present-day state-of-stress from the Otway Basin to the Gippsland Basin. This overview provides valuable baseline data for further geomechanical studies in southeast Australia and helps explain the regional controls on the state-of-stress in the area.Analysis of existing and new data from petroleum wells reveals broadly northwest–southeast oriented, maximum horizontal stress with an anticlockwise rotation of about 15° from the Otway Basin to the Gippsland Basin. A general increase in minimum horizontal stress magnitude from the Otway Basin towards the Gippsland Basin is also observed. The present-day state-of-stress has been interpreted as strike-slip in the South Australian (SA) Otway Basin, strike-slip trending towards reverse in the Victorian Otway Basin and borderline strike-slip/reverse in the Gippsland Basin. The present-day stress states and the orientation of the maximum horizontal stress are consistent with previously published earthquake focal mechanism solutions and the neotectonic record for the region. The consistency between measured present-day stress in the basement (from focal mechanism solutions) and the sedimentary basin cover (from petroleum well data) suggests a dominantly tectonic far-field control on the present-day stress distribution of southeast Australia. The rotation of the maximum horizontal stress and the increase in magnitude of the minimum horizontal stress from west to east across southeast Australia may be due to the relative proximity of the New Zealand segment of the plate boundary.


2019 ◽  
Vol 755 ◽  
pp. 109-126
Author(s):  
Jiyan Lin ◽  
Walter D. Mooney ◽  
Fuyun Wang ◽  
Yonghong Duan ◽  
Xiaofeng Tian ◽  
...  

2020 ◽  
Vol 221 (2) ◽  
pp. 843-856
Author(s):  
Wenhuan Kuang ◽  
Jie Zhang

SUMMARY Conventionally, the routine workflow of stress field estimation from seismic data consists of two steps: focal mechanism inversion and stress inversion. This two-step workflow suffers from the cumulative uncertainties of both the focal mechanism inversion process and the stress inversion process. To mitigate the cumulative errors, a few previous studies have put efforts to directly estimate the stress field using P-wave polarities. In this study, we develop a new approach to directly estimate tectonic stress fields with better accuracy through waveform matching. This new approach combines the two steps into a one-step workflow to mitigate the cumulative uncertainties through the physical relationship between a stress field and the recorded waveforms. This method assumes a homogeneous stress field in space in the local source region and that the fault slip occurs in the direction of the resolved shear stress acting on the fault plane. Under these assumptions, the stress pattern that generates the theoretical waveforms that best fit the waveforms observed is directly retrieved as the true stress field. The merits of the new approach include that this approach can mitigate the cumulative uncertainties suffered from the conventional two-step workflow and does not require determination of the focal mechanisms of each event; thus, this method is applicable to data sets with few stations. Synthetic tests with and without noise are conducted to demonstrate the performance and merits of this method. Then, the new approach is applied to a real data set from central Oklahoma between March 2013 and March 2016. The resulting stress pattern is consistent with that estimated from previous studies examining the same region. These applications show the benefits and validity of the new approach.


2014 ◽  
Vol 81 (3) ◽  
pp. 400-423 ◽  
Author(s):  
Jijun Li ◽  
Xiaomin Fang ◽  
Chunhui Song ◽  
Baotian Pan ◽  
Yuzhen Ma ◽  
...  

AbstractThe way in which the NE Tibetan Plateau uplifted and its impact on climatic change are crucial to understanding the evolution of the Tibetan Plateau and the development of the present geomorphology and climate of Central and East Asia. This paper is not a comprehensive review of current thinking but instead synthesises our past decades of work together with a number of new findings. The dating of Late Cenozoic basin sediments and the tectonic geomorphology of the NE Tibetan Plateau demonstrates that the rapid persistent rise of this plateau began ~8 ± 1 Ma followed by stepwise accelerated rise at ~3.6 Ma, 2.6 Ma, 1.8–1.7 Ma, 1.2–0.6 Ma and 0.15 Ma. The Yellow River basin developed at ~1.7 Ma and evolved to its present pattern through stepwise backward-expansion toward its source area in response to the stepwise uplift of the plateau. High-resolution multi-climatic proxy records from the basins and terrace sediments indicate a persistent stepwise accelerated enhancement of the East Asian winter monsoon and drying of the Asian interior coupled with the episodic tectonic uplift since ~8 Ma and later also with the global cooling since ~3.2 Ma, suggesting a major role for tectonic forcing of the cooling.


2019 ◽  
Vol 91 (1) ◽  
pp. 195-206 ◽  
Author(s):  
Alireza Babaie Mahani ◽  
Fatemeh Esfahani ◽  
Honn Kao ◽  
Michelle Gaucher ◽  
Mark Hayes ◽  
...  

Abstract We provide a close look at the source mechanism of hydraulically fractured induced earthquakes and the in situ stress field within the southern Montney unconventional play in the northeast British Columbia, Canada. P‐wave first‐motion focal mechanisms were obtained for 66 earthquakes with magnitudes between 1.5 and 4.6. Results show that strike‐slip movement is the prevailing source mechanism for the events in this area, although reverse faulting is also observed for a few earthquakes. The best‐fitting nodal plane mostly strikes at ∼N60° E, with most events having dip angles of >60°. Using the Martinez‐Garzon et al. (2014) stress inversion module, we obtained the orientation of the three principal compressive stress (S1>S2>S3) and the relative intermediate principal stress magnitude (R) in five clusters. Assuming the best‐fitting nodal plane to be the causative fault, R values are mostly between 0.8 and 0.9 suggesting that the magnitude of S2 and S3 are similar, which is consistent with strike‐slip or reverse‐faulting regimes. The plunge of S1 varies between 1° and 3°, with its trend varying between N21°E and N34°E. On the other hand, the plunge of S3 varies between 22° and 50°, with its trend varies between N68°W and N58°W. Following Lund and Townend (2007), we calculated the trend of maximum horizontal stress to vary from N22°E to N33°E, in comparison with the average trend of N41°E from the World Stress Map (Heidbach et al., 2016). Through analysis of the Coulomb failure criterion and Mohr diagrams, we estimated the amount of pore‐pressure increase necessary to initiate shear slip to range between 4 and 29 MPa (average of 14±8  MPa) in the study area.


Sign in / Sign up

Export Citation Format

Share Document