Lithospheric structure beneath the central and western North China Craton and adjacent regions from S-receiver function imaging

2019 ◽  
Vol 219 (1) ◽  
pp. 619-632 ◽  
Author(s):  
Yaoyang Zhang ◽  
Ling Chen ◽  
Yinshuang Ai ◽  
Mingming Jiang

Summary To elucidate the nature and extent of the lithospheric modification in the central and western North China Craton (NCC) and adjacent regions, we used the wave equation–based migration technique of S-receiver function on teleseismic data collected from 314 broadband stations in this region to image the lithospheric structure. Incorporating data from previous lithospheric structure studies, we obtained unprecedented high-resolution depth maps of the lithosphere–asthenosphere boundary (LAB) and mid-lithospheric discontinuity (MLD) in the NCC. Our results show more detailed variations of the lithospheric thickness in the central and western NCC and adjacent regions, which ranges from 100 to >170 km, in marked contrast to the thinned lithosphere (60–100 km) in the eastern NCC. Despite its generally thick lithosphere (>130 km), the Ordos Block shows a concordant N–S difference from the surface to deep lithosphere with a boundary at the latitude of 37–38°N. The central NCC is laterally heterogeneous in the lithospheric structure, and the thick lithosphere (∼160 km) in the south is interpreted as a remnant cratonic mantle root. The central Qinling Orogenic Belt preserves a thick lithosphere (∼150 km), which may block the asthenospheric flow driven by extrusion of the Tibetan Plateau to the west of the NCC. Moreover, a negative MLD is widely identified at the depth of 80–110 km within the thick lithosphere, which corroborates the global existence of the MLD in continental regions. The consistence in the depth of the MLD and the shallow LAB in the eastern NCC supports the conjecture that the MLD may have played an important role in the lithospheric modification of the eastern NCC.

2015 ◽  
Vol 7 (2) ◽  
pp. 1315-1346 ◽  
Author(s):  
R. Kind ◽  
T. Eken ◽  
F. Tilmann ◽  
F. Sodoudi ◽  
T. Taymaz ◽  
...  

Abstract. We analyze S-receiver functions to investigate the variations of lithospheric thickness below the entire region of Turkey and surroundings. The teleseismic data used here have been compiled combining all permanent seismic stations which are open to public access. We obtained almost 12 000 S-receiver function traces characterizing the seismic discontinuities between the Moho and the discontinuity at 410 km depth. Common-conversion-points stacks yield well-constrained images of the Moho and of the lithosphere–asthenosphere boundary (LAB). Results from previous studies suggesting shallow LAB depths between 80 and 100 km are confirmed in the entire region outside the subduction zones. We did not observe changes of LAB depths across the North and East Anatolian Faults. To the east of Cyprus, we see indications of the Arabian LAB. The African plate is observed down to about 150 km depth subducting to the north and east between the Aegean and Cyprus with a tear at Cyprus. We also observed the discontinuity at 410 km depth and a negative discontinuity above the 410, which might indicate a zone of partial melt above this discontinuity.


2019 ◽  
Vol 11 (1) ◽  
pp. 682-696
Author(s):  
Yi Zhang ◽  
Jinli Huang

Abstract H-k stacking method is a standard receiver-function method to detect crustal thickness. But this method can not be applied in low-velocity sedimentary basins. To solve this problem, we propose an improved sequential H-k stacking method. The improved method needs two sequential stacks. Firstly, sediment structure is calculated using converted waves and multiples on the bottom boundary of sediments. Secondly, the sedimentary results are applied to calculate the crustal structure. Theoretical calculations and “recovery tests” indicate that the improved method can obtain accurate estimates in sedimentary basins. With the teleseismic data of North China Craton, the structure of sediments is thick in the depression and thin in the uplifted area, which is consistent with Deep Seismic Sounding results. The crust to the west of the North-South Gravity Lineament is relatively thick and has a low average Poisson ratio, whereas the east is relatively thin and has a high average Poisson ratio. This result and the structural feature from data regression imply that the eastern crust of the North China Craton has experienced wide extension, which reflect the crustal response to the severe destruction and deformation in that area compared to the western crust.


2016 ◽  
Vol 34 ◽  
pp. 315-323 ◽  
Author(s):  
Ya Xu ◽  
Hermann Zeyen ◽  
Tianyao Hao ◽  
M. Santosh ◽  
Zhiwei Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document