scholarly journals The effect of stress changes on time-dependent earthquake probabilities for the central Wasatch Fault Zone, Utah, USA.

Author(s):  
A Verdecchia ◽  
S Carena ◽  
B Pace ◽  
C B DuRoss

Summary Static and quasi-static Coulomb stress changes produced by large earthquakes can modify the probability of occurrence of subsequent events on neighboring faults. This approach is based on physical (Coulomb stress changes) and statistical (probability calculations) models, which are influenced by the quality and quantity of data available in the study region. Here, we focus on the Wasatch Fault Zone (WFZ), a well-studied active normal fault system having abundant geologic and paleoseismological data. Paleoseismological trench investigations of the WFZ indicate that at least 24 large, surface-faulting earthquakes have ruptured the fault's five central, 35–59-km long segments since ∼7 ka. Our goal is to determine if the stress changes due to the youngest paleoevents have significantly modified the present-day probability of occurrence of large earthquakes on each of the segments. For each segment, we modeled the cumulative (coseismic + postseismic) Coulomb stress changes (∆CFScum) due to earthquakes younger than the most recent event on the segment in question and applied the resulting values to the time-dependent probability calculations. Results from the Coulomb stress modeling suggest that the Brigham City, Salt Lake City, and Provo segments have accumulated ∆CFScum larger than 10 bars, whereas the Weber segment has experienced a stress decrease of 5 bars, in the scenario of recent rupture of the Great Salt Lake fault to the west. Probability calculations predict high probability of occurrence for the Brigham City and Salt Lake City segments, due to their long elapsed times (> 1–2 ka) when compared to the Weber, Provo, and Nephi segments (< 1 ka). The range of calculated coefficients of variation (CV) has a large influence on the final probabilities, mostly in the case of the Brigham City segment. Finally, when the Coulomb stress and the probability models are combined, our results indicate that the ∆CFScum resulting from earthquakes postdating the youngest events on each of the five segments substantially affects the probability calculations for three of the segments: Brigham City, Salt Lake City, and Provo. The probability of occurrence of a large earthquake in the next 50 years on these three segments may therefore be underestimated if a time-independent approach, or a time-dependent approach that does not consider ∆CFS, is adopted.

Author(s):  
Konstantinos Gkogkas ◽  
Fan-Chi Lin ◽  
Amir A. Allam ◽  
Yadong Wang

Abstract We image the shallow structure across the East Bench segment of the Wasatch fault system in Salt Lake City using ambient noise recorded by a month-long temporary linear seismic array of 32 stations. We first extract Rayleigh-wave signals between 0.4 and 1.1 s period using noise cross correlation. We then apply double beamforming to enhance coherent cross-correlation signals and at the same time measure frequency-dependent phase velocities across the array. For each location, based on available dispersion measurements, we perform an uncertainty-weighted least-squares inversion to obtain a 1D VS model from the surface to 400 m depth. We put all piece-wise continuous 1D models together to construct the final 2D VS model. The model reveals high velocities to the east of the Pleistocene Lake Bonneville shoreline reflecting thinner sediments and low velocities particularly in the top 200 m to the west corresponding to the Salt Lake basin sediments. In addition, there is an ∼400-m-wide low-velocity zone that narrows with depth adjacent to the surface trace of the East Bench fault, which we interpret as a fault-related damage zone. The damage zone is asymmetric, wider on the hanging wall (western) side and with greater velocity reduction. These results provide important constraints on normal-fault earthquake mechanics, Wasatch fault earthquake behavior, and urban seismic hazard in Salt Lake City.


2021 ◽  
Vol 4 (2) ◽  
pp. 33-41
Author(s):  
Murat Utkucu ◽  
Hatice Durmuş

It has been globally documented over different tectonic environments that Coulomb static stress changes caused by a mainshock can promote or demote stresses along the neighboring faults and thus triggers or delays following seismicity. In the present study Coulomb stress changes of the earthquakes in the Lake Van area are calculated using available data and the likely source faults. The calculated stress change maps demonstrate that the large earthquakes in the Lake Area are mostly stressed by the preceding earthquakes, suggesting earthquake rupture interactions. It is further suggested that Coulomb stress maps could be used for constraining the likely locations of the future large earthquakes and in the earthquake hazard mitigation studies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nathan A. Toké ◽  
Joseph Phillips ◽  
Christopher Langevin ◽  
Emily Kleber ◽  
Christopher B. DuRoss ◽  
...  

How structural segment boundaries modulate earthquake behavior is an important scientific and societal question, especially for the Wasatch fault zone (WFZ) where urban areas lie along multiple fault segments. The extent to which segment boundaries arrest ruptures, host moderate magnitude earthquakes, or transmit ruptures to adjacent fault segments is critical for understanding seismic hazard. To help address this outstanding issue, we conducted a paleoseismic investigation at the Traverse Ridge paleoseismic site (TR site) along the ∼7-km-long Fort Canyon segment boundary, which links the Provo (59 km) and Salt Lake City (40 km) segments of the WFZ. At the TR site, we logged two trenches which were cut across sub-parallel traces of the fault, separated by ∼175 m. Evidence from these exposures leads us to infer that at least 3 to 4 earthquakes have ruptured across the segment boundary in the Holocene. Radiocarbon dating of soil material developed below and above fault scarp colluvial packages and within a filled fissure constrains the age of the events. The most recent event ruptured the southern fault trace between 0.2 and 0.4 ka, the penultimate event ruptured the northern fault trace between 0.6 and 3.4 ka, and two prior events occurred between 1.4 and 6.2 ka (on the southern fault trace) and 7.2 and 8.1 ka (northern fault trace). Colluvial wedge heights of these events ranged from 0.7 to 1.2 m, indicating the segment boundary experiences surface ruptures with more than 1 m of vertical displacement. Given these estimates, we infer that these events were greater than Mw 6.7, with rupture extending across the entire segment boundary and portions of one or both adjacent fault segments. The Holocene recurrence of events at the TR site is lower than the closest paleoseismic sites at the adjacent fault segment endpoints. The contrasts in recurrence rates observed within 15 km of the Fort Canyon fault segment boundary may be explained conceptually by a leaky segment boundary model which permits spillover events, ruptures centered on the segment boundary, and segmented ruptures. The TR site demonstrates the utility of paleoseismology within segment boundaries which, through corroboration of displacement data, can demonstrate rupture connectivity between fault segments and test the validity of rupture models.


Author(s):  
Ivan Wong ◽  
Qimin Wu ◽  
James C. Pechmann

Abstract The 2020 oblique normal-faulting M 5.7 Magna mainshock has provided the best dataset of recorded strong ground motions for an earthquake within the Wasatch Front region, Utah, and the larger Basin and Range Province. We performed a preliminary evaluation of the strong motion and broadband data from this earthquake and compared the data with the Next Generation Attenuation - West2 Project (NGA-West2) ground-motion models (GMMs). The highest horizontal peak ground acceleration (PGA) recorded was 0.43g (geometric mean of the two horizontal components) at a station located above the rupture plane at a rupture distance of 8 km. Eleven stations recorded PGAs &gt;0.20g. Most of these stations are located on the deep sedimentary deposits within the Salt Lake Valley, and all are at rupture distances &lt;20  km. The data compare favorably with the NGA-West2 GMMs, although the expected variability was observed. PGAs exceed the GMM predictions at the closest distances for the source model that we used. The area of the strongest ground shaking encompassed the town of Magna, where some of the heaviest damage occurred. A significant implication of the 2020 Magna earthquake for seismic hazards in the Salt Lake Valley arises from the possibility that this earthquake occurred on the Salt Lake City segment of the Wasatch fault. If so, then the dip of this fault segment must decrease with depth to ≤30°–35°, as proposed by Pang et al. (2020)—at least along the northern part of the segment where the earthquake occurred. Because of the lack of information about the subsurface geometry of the Wasatch fault zone, modeling of this fault zone in seismic hazard analyses has assumed a moderate dip of 50°±15°. Assuming a more shallowly dipping fault results in higher estimates of ground shaking in future large earthquakes on this fault. Alternative interpretations of the Magna earthquake are that it occurred (1) on an auxiliary fault within the Wasatch fault zone or (2) on a listric section of the northern Salt Lake City segment that is not representative of the geometry of the whole fault segment.


2021 ◽  
Vol 1 (1) ◽  
pp. 35-45
Author(s):  
Lee M. Liberty ◽  
James St. Clair ◽  
Adam P. McKean

Abstract Although the Wasatch fault is currently known to have a high-seismic hazard from motion along range-bounding faults, new seismic data reveal faulted and folded 13,000–30,000-yr-old Lake Bonneville strata beneath Salt Lake City (SLC). Coupled with previous excavation trench, borehole, and other geologic and geophysical observations, we conclude that a zone of latest Pleistocene and/or Holocene faulting and folding kinematically links the East Bench and Warm Springs faults through a 3 km wide relay structure and transfer zone. We characterize faults beneath downtown SLC as active, and these faults may displace or deform the ground surface during an earthquake. Through offset but linked faults, our observations support throughgoing ruptures across faults of the Wasatch fault zone (WFZ) and an elevated risk of earthquake-induced building damage.


Sign in / Sign up

Export Citation Format

Share Document