scholarly journals Receiver function mapping of mantle transition zone discontinuities beneath Alaska using scaled 3-D velocity corrections

2019 ◽  
Vol 219 (2) ◽  
pp. 1432-1446 ◽  
Author(s):  
A M van Stiphout ◽  
S Cottaar ◽  
A Deuss

SUMMARY The mantle transition zone is the region between the globally observed major seismic velocity discontinuities around depths of 410 and 660 km and is important for determining the style of convection and mixing between the upper and the lower mantle. In this study, P-to-S converted waves, or receiver functions, are used to study these discontinuities beneath the Alaskan subduction zone, where the Pacific Plate subducts underneath the North American Plate. Previous tomographic models do not agree on the depth extent of the subducting slab, therefore improved imaging of the Earth structure underneath Alaska is required. We use 27 800 high quality radial receiver functions to make common conversion point stacks. Upper mantle velocity anomalies are accounted for by two recently published regional tomographic S-wave velocity models. Using these two tomographic models, we show that the discontinuity depths within our CCP stacks are highly dependent on the choice of velocity model, between which velocity anomaly magnitudes vary greatly. We design a quantitative test to show whether the anomalies in the velocity models are too strong or too weak, leading to over- or undercorrected discontinuity depths. We also show how this test can be used to rescale the 3-D velocity corrections in order to improve the discontinuity topography maps. After applying the appropriate corrections, we find a localized thicker mantle transition zone and an uplifted 410 discontinuity, which show that the slab has clearly penetrated into the mantle transition zone. Little topography is seen on the 660 discontinuity, indicating that the slab has probably not reached the lower mantle. In the southwest, P410s arrivals have very small amplitudes or no significant arrival at all. This could be caused by water or basalt in the subducting slab, reducing the strength at the 410, or by topography on the 410 discontinuity, preventing coherent stacking. In the southeast of Alaska, a thinner mantle transition zone is observed. This area corresponds to the location of a slab window, and thinning of the mantle transition zone may be caused by hot mantle upwellings.

2019 ◽  
pp. 16-27
Author(s):  
L. P. Vinnik

The application results of the receiver function technique are briefly outlined. The topography of the main seismic boundaries in the mantle transition zone is evaluated with resolution of about 3 km in depth and about 200 km laterally. The maximal amplitudes of depth variations of the main boundaries reach tens of kilometers. The mantle transition zone thinning in the hot spots and the respective increase in temperature by ~100 °C is established. In several regions, two low-velocity layers are revealed in the mantle transition zone, one directly above the 410-km seismic discontinuity and another at a depth of 450 to 500 km. The origin of the first layer is associated with dehydration in the mantle plumes during olivine – walesite phase transformation. The increase in the S-wave velocity at the base of the second layer can explain the observations of the so-called 520-km boundary. The traditional approach to studying the structure of the crust and upper mantle is from surface waves. Receiver functions can provide higher resolution at the same depths when a combination of P- and S-wave receiver functions is used. This type of results was obtained for Fennoscandia, Kaapvaal craton, Indian shield, Central Tien Shan, Baikal rift zone, the Azores, Cape Verde Islands, and the western Mediterranean. S-receiver functions were used in the studies of the lunar crust. The joint P- and S-receiver function inversion provides robust estimates of the parameters of seismic boundaries including weak discontinuities such as the lithosphere – asthenosphere interface of cratons. The parameters determined from receiver functions include the P- to S-wave velocity ratio. In a few regions, a very high (> 2.0) velocity ratio is observed in the lower crust, probably indicating the presence of a fluid with high pore pressure. Receiver functions allow estimating the parameters of azimuthal anisotropy as a function of depth. The changes of the parameters with depth make it possible to distinguish the active anisotropy associated with recent deformations from the frozen anisotropy – the effect of the past tectonic processes.


2020 ◽  
Author(s):  
Grace E. Shephard ◽  
John Hernlund ◽  
Christine Houser ◽  
Reidar Trønnes ◽  
Fabio Crameri

<p>The lower mantle can be grouped into high, low, and average (i.e., ambient) seismic velocity domains at each depth, based on the amplitude and polarity of wavespeed perturbations (% δlnVs, % δlnVp). Many studies focus on elucidating the thermo-chemical and structural origins of fast and slow domains, in particular. Subducted slabs are associated with fast seismic anomalies throughout the mantle, and reconstructed palaeo-positions of Cenozoic to Mesozoic subduction zones agrees with seismically imaged deep slabs. Conversely, slow wavespeed domains account for the two antipodal LLSVPs in the lowermost mantle, which are potentially long-lived features, as well as rising hot mantle above the LLSVPs and discrete mantle plumes. However, low-amplitude wavespeeds (close to the reference velocity models) are often overlooked By comparing multiple P- and S-wave tomographic models individually, and through “vote maps”, we reveal the depth-dependent characteristics and the geometry of ambient structures, and compare them to numerical convection models. The ambient velocity domains may contain early refractory and bridgmantic mantle with elevated Si/(Mg+Fe) and Mg/Fe ratios (BEAMS; bridgmanite-enriched mantle structures). They could have formed by early basal magma ocean (BMO) fractionation during a period of core-BMO exchange of SiO<sub>2</sub> (from core to BMO) and FeO (from BMO to core), or represent cumulates of BMO crystallization with bridgmanite as the liquidus phase. The high viscosity of bridgmanitic material may promote its convective aggregation and stabilise the large-scale, degree-2 convection pattern. Despite its high viscosity, bridgmanitic material, representing a primitive and refractory reservoir for primordial-like He and Ne components, might be entrained in vigorous, deep-rooted plumes. The restriction of a weak seismic signal, ascribed to iron spin-pairing in ferropericlase, to the fast and slow domains, supports the notion that the ambient lower mantle domains are bridgmanitic.</p>


2014 ◽  
Vol 51 (4) ◽  
pp. 407-417 ◽  
Author(s):  
H.S. Kim ◽  
J.F. Cassidy ◽  
S.E. Dosso ◽  
H. Kao

This paper presents results of a passive-source seismic mapping study in the Nechako–Chilcotin plateau of central British Columbia, with the ultimate goal of contributing to assessments of hydrocarbon and mineral potential of the region. For the present study, an array of nine seismic stations was deployed in 2006–2007 to sample a wide area of the Nechako–Chilcotin plateau. The specific goal was to map the thickness of the sediments and volcanic cover, and the overall crustal thickness and structural geometry beneath the study area. This study utilizes recordings of about 40 distant earthquakes from 2006 to 2008 to calculate receiver functions, and constructs S-wave velocity models for each station using the Neighbourhood Algorithm inversion. The surface sediments are found to range in thickness from about 0.8 to 2.7 km, and the underlying volcanic layer from 1.8 to 4.7 km. Both sediments and volcanic cover are thickest in the central portion of the study area. The crustal thickness ranges from 22 to 36 km, with an average crustal thickness of about 30–34 km. A consistent feature observed in this study is a low-velocity zone at the base of the crust. This study complements other recent studies in this area, including active-source seismic studies and magnetotelluric measurements, by providing site-specific images of the crustal structure down to the Moho and detailed constraints on the S-wave velocity structure.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 186 ◽  
Author(s):  
Yining Zhang ◽  
Yanyao Zhang ◽  
Yun Liu ◽  
Xi Liu

The metastable olivine (Ol) wedge hypothesis assumes that Ol may exist as a metastable phase at the P conditions of the mantle transition zone (MTZ) and even deeper regions due to inhibition of the phase transitions from Ol to wadsleyite and ringwoodite caused by low T in the cold subducting slabs. It is commonly invoked to account for the stagnation of the descending slabs, deep focus earthquakes and other geophysical observations. In the last few years, several new structures with the forsterite (Fo) composition, namely Fo-II, Fo-III and Fo-IV, were either experimentally observed or theoretically predicted at very low T conditions. They may have important impacts on the metastable Ol wedge hypothesis. By performing first-principles calculations, we have systematically examined their crystallographic characteristics, elastic properties and dynamic stabilities from 0 to 100 GPa, and identified the Fo-III phase as the most likely metastable phase to occur in the cold slabs subducted to the depths equivalent to the lower part of the MTZ (below the ~600 km depth) and even the lower mantle. As disclosed by our theoretical simulations, the Fo-III phase is a post-spinel phase (space group Cmc21), has all cations in sixfold coordination at P < ~60 GPa, and shows dynamic stability for the entire P range from 0 to 100 GPa. Further, our static enthalpy calculations have suggested that the Fo-III phase may directly form from the Fo material at ~22 GPa (0 K), and our high-T phase relation calculations have located the Fo/Fo-III phase boundary at ~23.75 GPa (room T) with an averaged Clapeyron slope of ~−1.1 MPa/K for the T interval from 300 to 1800 K. All these calculated phase transition pressures are likely overestimated by ~3 GPa because of the GGA method used in this study. The discrepancy between our predicted phase transition P and the experimental observation (~58 GPa at 300 K) can be explained by slow reaction rate and short experimental durations. Taking into account the P-T conditions in the cold downgoing slabs, we therefore propose that the Fo-III phase, rather than the Ol, highly possibly occurs as the metastable phase in the cold slabs subducted to the P conditions of the lower part of the MTZ (below the ~600 km depth) and even the lower mantle. In addition, our calculation has showed that the Fo-III phase has higher bulk seismic velocity, and thus may make important contributions to the high seismic speeds observed in the cold slabs stagnated near the upper mantle-lower mantle boundary. Future seismic studies may discriminate the effects of the Fo-III phase and the low T. Surprisingly, the Fo-III phase will speed up, rather than slow down, the subducting process of the cold slabs, if it metastably forms from the Ol. In general, the Fo-III phase has a higher density than the warm MTZ, but has a lower density than the lower mantle, as suggested by our calculations.


Author(s):  
Gonzalo Rubio ◽  
Yunfeng Chen ◽  
Mauricio D Sacchi ◽  
Yu Jeffrey Gu

Summary The receiver function method is fundamental in assessing mantle seismic discontinuity depths and reflectivities. Most of the current approaches rely on phase equalization, though in many applications, high levels of incoherent noise, incomplete and irregular sampling customarily interfere with the analysis of weak secondary phases. In recent years, advancements in the field of multidimensional seismic data processing have triggered a shift in interest towards its application to receiver functions, specifically to single station gathers that depend on a single spatial dimension. Our work generalizes the application of singular spectrum analysis (SSA) to receiver functions that rely on two and four spatial dimensions recorded by dense seismic arrays. We adopt a multidimensional signal processing approach known as multichannel singular spectrum analysis (MSSA). We develop a strategy to assemble and enhance 3D and 5D seismic volumes via matrix rank reduction and a reinsertion algorithm to simultaneously suppress random noise, retrieve absent observations and boost identifiability of secondary conversions. We provide informative synthetic examples to gain insight into the effectiveness and limitations of our approach. In the real data example we improve weak conversions from the mantle transition zone recorded by the USArray in the Yellowstone area. The reconstruction algorithm accurately recovers the timing and polarity of conversions associated with the 410-km, 520-km, and 660-km seismic discontinuities. Our investigation shows that the simultaneous processing of several spatial variables expedites signal restoration, particularly in directions where large recording gaps exist due to a lack of earthquakes, which aids the mapping and identification of the mantle transition zone interfaces. This study presents a theoretical/practical framework for the reconstruction of multi-dimensional receiver function data, and its full potential can be exploited with dense acquisition available from the emerging seismic nodal arrays to improve passive seismic imaging.


1980 ◽  
Vol 70 (2) ◽  
pp. 487-508
Author(s):  
Sonja Faber ◽  
Gerhard MÜller

abstract Precursors to S and SKS were observed in long-period SRO and WWSSN seismograms of the Romanian earthquake of March 4, 1977, recorded in the United States at distances from 68° to 93°. According to the fault-plane solution, the stations were close to a nodal plane and SV radiation was optimum in their direction. Particle-motion diagrams, constructed from the digital data of the SRO station ANMO (distance 89.1°), show the P-wave character of the precursors. Several interpretations are discussed; the most plausible is that the precursors are Sp phases generated by conversion from S to P below the station. The travel-time differences between S or SKS and Sp are about 60 sec and indicate conversion in the transition zone between the upper and lower mantle. Sp conversions were also observed at long-period WWSSN stations in the western United States for 2 Tonga-Fiji deep-focus earthquakes (distances from 82° to 96°). Special emphasis is given in this paper to the calculation of theoretical seismograms, both for Sp precursors and the P-wave coda, including high-order multiples such as sP4 which may arrive simultaneously with Sp. The Sp calculations show: (1) the conversions produced by S, ScS, and SKS at interfaces or transition zones between the upper and lower mantle form a complicated interference pattern, and (2) conversion at transition zones is less effective than at first-order discontinuities only if their thickness is greater than about half a wavelength of S waves. As a consequence, details of the velocity structure between the upper and lower mantle can only be determined within these limits from long-period Sp observations. Our observations are compatible with velocity models having pronounced transition zones at depths of 400 and 670 km as have been proposed for the western United States, and they exclude much smoother structures. Our study suggests that long-period Sp precursors from pure thrust or normal-fault earthquakes, observed at distances from 70° to 95° close to a nodal plane and at azimuths roughly perpendicular to its strike, offer a simple means for qualitative mapping of the sharpness of the transition zones between the upper and lower mantle.


2019 ◽  
Vol 23 (3) ◽  
pp. 209-223 ◽  
Author(s):  
Caglar Ozer ◽  
Mehmet Ozyazicioglu

Erzurum and its surroundings are one of the seismically active and hydrothermal areas in the Eastern part of Turkey. This study is the first approach to characterize the crust by seismic features by using the local earthquake tomography method. The earthquake source location and the three dimensional seismic velocity structures are solved simultaneously by an iterative tomographic algorithm, LOTOS-12. Data from a combined permanent network comprising comprises of 59 seismometers which was installed by Ataturk University-Earthquake Research Center and Earthquake Department of the Disaster and Emergency Management Authority  to monitor the seismic activity in the Eastern Anatolia, In this paper, three-dimensional Vp and Vp/Vs characteristics of Erzurum geothermal area were investigated down to 30 km by using 1685 well-located earthquakes with 29.894 arrival times, consisting of 17.298 P- wave and 12.596 S- wave arrivals. We develop new high-resolution depth-cross sections through Erzurum and its surroundings to provide the subsurface geological structure of seismogenic layers and geothermal areas. We applied various size horizontal and vertical checkerboard resolution tests to determine the quality of our inversion process. The basin models are traceable down to 3 km depth, in terms of P-wave velocity models. The higher P-wave velocity areas in surface layers are related to the metamorphic and magmatic compact materials. We report that the low Vp and high Vp/Vs values are observed in Yedisu, Kaynarpinar, Askale, Cimenozu, Kaplica, Ovacik, Yigitler, E part of Icmeler, Koprukoy, Uzunahmet, Budakli, Soylemez, Koprukoy, Gunduzu, Karayazi, Icmesu, E part of Horasan and Kaynak regions indicated geothermal reservoir.


Sign in / Sign up

Export Citation Format

Share Document