Ambient lower mantle structure and composition inferred from seismic tomography, convection models, and geochemistry.

Author(s):  
Grace E. Shephard ◽  
John Hernlund ◽  
Christine Houser ◽  
Reidar Trønnes ◽  
Fabio Crameri

<p>The lower mantle can be grouped into high, low, and average (i.e., ambient) seismic velocity domains at each depth, based on the amplitude and polarity of wavespeed perturbations (% δlnVs, % δlnVp). Many studies focus on elucidating the thermo-chemical and structural origins of fast and slow domains, in particular. Subducted slabs are associated with fast seismic anomalies throughout the mantle, and reconstructed palaeo-positions of Cenozoic to Mesozoic subduction zones agrees with seismically imaged deep slabs. Conversely, slow wavespeed domains account for the two antipodal LLSVPs in the lowermost mantle, which are potentially long-lived features, as well as rising hot mantle above the LLSVPs and discrete mantle plumes. However, low-amplitude wavespeeds (close to the reference velocity models) are often overlooked By comparing multiple P- and S-wave tomographic models individually, and through “vote maps”, we reveal the depth-dependent characteristics and the geometry of ambient structures, and compare them to numerical convection models. The ambient velocity domains may contain early refractory and bridgmantic mantle with elevated Si/(Mg+Fe) and Mg/Fe ratios (BEAMS; bridgmanite-enriched mantle structures). They could have formed by early basal magma ocean (BMO) fractionation during a period of core-BMO exchange of SiO<sub>2</sub> (from core to BMO) and FeO (from BMO to core), or represent cumulates of BMO crystallization with bridgmanite as the liquidus phase. The high viscosity of bridgmanitic material may promote its convective aggregation and stabilise the large-scale, degree-2 convection pattern. Despite its high viscosity, bridgmanitic material, representing a primitive and refractory reservoir for primordial-like He and Ne components, might be entrained in vigorous, deep-rooted plumes. The restriction of a weak seismic signal, ascribed to iron spin-pairing in ferropericlase, to the fast and slow domains, supports the notion that the ambient lower mantle domains are bridgmanitic.</p>

2020 ◽  
Vol 224 (3) ◽  
pp. 1553-1571
Author(s):  
Emily E Rodríguez ◽  
Daniel Evan Portner ◽  
Susan L Beck ◽  
Marcelo P Rocha ◽  
Marcelo B Bianchi ◽  
...  

SUMMARY The Andean Subduction Zone is one of the longest continuous subduction zones on Earth. The relative simplicity of the two-plate system has makes it an ideal natural laboratory to study the dynamics in subduction zones. We measure teleseismic S and SKS traveltime residuals at >1000 seismic stations that have been deployed across South America over the last 30 yr to produce a finite-frequency teleseismic S-wave tomography model of the mantle beneath the Andean Subduction Zone related to the Nazca Plate, spanning from ∼5°N to 45°S and from depths of ∼130 to 1200 km. Within our model, the subducted Nazca slab is imaged as a fast velocity seismic anomaly. The geometry and amplitude of the Nazca slab anomaly varies along the margin while the slab anomaly continues into the lower mantle along the entirety of the subduction margin. Beneath northern Brazil, the Nazca slab appears to stagnate at ∼1000 km depth and extend eastward subhorizontally for >2000 km. South of 25°S the slab anomaly in the lower mantle extends offshore of eastern Argentina, hence we do not image if a similar stagnation occurs. We image several distinct features surrounding the slab including two vertically oriented slow seismic velocity anomalies: one beneath the Peruvian flat slab and the other beneath the Paraná Basin of Brazil. The presence of the latter anomaly directly adjacent to the stagnant Nazca slab suggests that the plume, known as the Paraná Plume, may be a focused upwelling formed in response to slab stagnation in the lower mantle. Additionally, we image a high amplitude fast seismic velocity anomaly beneath the Chile trench at the latitude of the Sierras Pampeanas which extends from ∼400 to ∼1000 km depth. This anomaly may be the remnants of an older, detached slab, however its relationship with the Nazca–South America subduction zone remains enigmatic.


2019 ◽  
Vol 219 (2) ◽  
pp. 1432-1446 ◽  
Author(s):  
A M van Stiphout ◽  
S Cottaar ◽  
A Deuss

SUMMARY The mantle transition zone is the region between the globally observed major seismic velocity discontinuities around depths of 410 and 660 km and is important for determining the style of convection and mixing between the upper and the lower mantle. In this study, P-to-S converted waves, or receiver functions, are used to study these discontinuities beneath the Alaskan subduction zone, where the Pacific Plate subducts underneath the North American Plate. Previous tomographic models do not agree on the depth extent of the subducting slab, therefore improved imaging of the Earth structure underneath Alaska is required. We use 27 800 high quality radial receiver functions to make common conversion point stacks. Upper mantle velocity anomalies are accounted for by two recently published regional tomographic S-wave velocity models. Using these two tomographic models, we show that the discontinuity depths within our CCP stacks are highly dependent on the choice of velocity model, between which velocity anomaly magnitudes vary greatly. We design a quantitative test to show whether the anomalies in the velocity models are too strong or too weak, leading to over- or undercorrected discontinuity depths. We also show how this test can be used to rescale the 3-D velocity corrections in order to improve the discontinuity topography maps. After applying the appropriate corrections, we find a localized thicker mantle transition zone and an uplifted 410 discontinuity, which show that the slab has clearly penetrated into the mantle transition zone. Little topography is seen on the 660 discontinuity, indicating that the slab has probably not reached the lower mantle. In the southwest, P410s arrivals have very small amplitudes or no significant arrival at all. This could be caused by water or basalt in the subducting slab, reducing the strength at the 410, or by topography on the 410 discontinuity, preventing coherent stacking. In the southeast of Alaska, a thinner mantle transition zone is observed. This area corresponds to the location of a slab window, and thinning of the mantle transition zone may be caused by hot mantle upwellings.


Geophysics ◽  
1994 ◽  
Vol 59 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Gary Mavko ◽  
Diane Jizba

Seismic velocity dispersionin fluid-saturated rocks appears to be dominated by tow mecahnisms: the large scale mechanism modeled by Biot, and the local flow or squirt mecahnism. The tow mechanisms can be distuinguished by the ratio of P-to S-wave dispersions, or more conbeniently, by the ratio of dynamic bulk to shear compliance dispersions derived from the wave velocities. Our formulation suggests that when local flow denominates, the dispersion of the shear compliance will be approximately 4/15 the dispersion of the compressibility. When the Biot mechanism dominates, the constant of proportionality is much smaller. Our examination of ultrasonic velocities from 40 sandstones and granites shows that most, but not all, of the samples were dominated by local flow dispersion, particularly at effective pressures below 40 MPa.


2021 ◽  
Author(s):  
Sara Aniko Wirp ◽  
Alice-Agnes Gabriel ◽  
Elizabeth H. Madden ◽  
Maximilian Schmeller ◽  
Iris van Zelst ◽  
...  

<p>Earthquake rupture dynamic models capture the variability of slip in space and time while accounting for the structural complexity which is characteristic for subduction zones. The use of a geodynamic subduction and seismic cycling (SC) model to initialize dynamic rupture (DR) ensures that initial conditions are self-consistent and reflect long-term behavior. We extend the 2D geodynamical subduction and SC model of van Zelst et al. (2019) and use it as input for realistic 3-dimensional DR megathrust earthquake models. We follow the subduction to tsunami run-up linking approach described in Madden et al. (2020), including a complex subduction setup along with their resulting tsunamis. The distinct variation of shear traction and friction coefficients with depth lead to realistic average rupture speeds and dynamic stress drop as well as efficient tsunami generation. </p><p>We here analyze a total of 14 subduction-initialized 3D dynamic rupture-tsunami scenarios. By varying the hypocentral location along arc and depth, we generate 12 distinct unilateral and bilateral earthquakes with depth-variable slip distribution and directivity, bimaterial, and geometrical effects in the dynamic slip evolutions. While depth variations of the hypocenters barely influence the tsunami behavior, lateral varying nucleation locations lead to a shift in the on-fault slip which causes time delays of the wave arrival at the coast. The fault geometry of our DR model that arises during the SC model is non-planar and includes large-scale roughness. These features (topographic highs) trigger supershear rupture propagation in up-dip or down-dip direction, depending on the hypocentral depth.</p><p>In two additional scenarios, we analyze variations in the energy budget of the DR scenarios. In the SC model, an incompressible medium is assumed (ν=0.5) which is valid only for small changes in pressure and temperature. Unlike in the DR model where the material is compressible and a different Poisson’s ratio (ν=0.25) has to be assigned. Poisson’s ratios between 0.1 and 0.4 stand for various compressible materials. To achieve a lower shear strength of all material on and off the megathrust fault and to facilitate slip, we increase the Poisson ratio in the DR model to ν=0.3 which is consistent with basaltic rocks. As a result, larger fault slip is concentrated at shallower depths and generates higher vertical seafloor displacement and earthquake moment magnitude respectively. Even though the tsunami amplitudes are much higher, the same dynamic behavior as in the twelve hypocenter-variable models can be observed. Lastly, we increase fracture energy by changing the critical slip distance in the linear slip-weakening frictional parameterization. This generates a tsunami earthquake (Kanamori, 1972) characterized by low rupture velocity (on average half the amount of s-wave speed) and low peak slip rate, but at the same time large shallow fault slip and moment magnitude. The shallow fault slip of this event causes the highest vertical seafloor uplift compared to all other simulations. This leads to the highest tsunami amplitude and inundation area while the wavefront hits the coast delayed compared to the other scenarios.</p>


2019 ◽  
Vol 23 (3) ◽  
pp. 209-223 ◽  
Author(s):  
Caglar Ozer ◽  
Mehmet Ozyazicioglu

Erzurum and its surroundings are one of the seismically active and hydrothermal areas in the Eastern part of Turkey. This study is the first approach to characterize the crust by seismic features by using the local earthquake tomography method. The earthquake source location and the three dimensional seismic velocity structures are solved simultaneously by an iterative tomographic algorithm, LOTOS-12. Data from a combined permanent network comprising comprises of 59 seismometers which was installed by Ataturk University-Earthquake Research Center and Earthquake Department of the Disaster and Emergency Management Authority  to monitor the seismic activity in the Eastern Anatolia, In this paper, three-dimensional Vp and Vp/Vs characteristics of Erzurum geothermal area were investigated down to 30 km by using 1685 well-located earthquakes with 29.894 arrival times, consisting of 17.298 P- wave and 12.596 S- wave arrivals. We develop new high-resolution depth-cross sections through Erzurum and its surroundings to provide the subsurface geological structure of seismogenic layers and geothermal areas. We applied various size horizontal and vertical checkerboard resolution tests to determine the quality of our inversion process. The basin models are traceable down to 3 km depth, in terms of P-wave velocity models. The higher P-wave velocity areas in surface layers are related to the metamorphic and magmatic compact materials. We report that the low Vp and high Vp/Vs values are observed in Yedisu, Kaynarpinar, Askale, Cimenozu, Kaplica, Ovacik, Yigitler, E part of Icmeler, Koprukoy, Uzunahmet, Budakli, Soylemez, Koprukoy, Gunduzu, Karayazi, Icmesu, E part of Horasan and Kaynak regions indicated geothermal reservoir.


2020 ◽  
Author(s):  
Rebecca Bell

<p>The discovery of slow slip events (SSEs) at subduction margins in the last two decades has changed our understanding of how stress is released at subduction zones. Fault slip is now viewed as a continuum of different slip modes between regular earthquakes and aseismic creep, and an appreciation of seismic hazard can only be realised by understanding the full spectrum of slip. SSEs may have the potential to trigger destructive earthquakes and tsunami on faults nearby, but whether this is possible and why SSEs occur at all are two of the most important questions in earthquake seismology today. Laboratory and numerical models suggest that slow slip can be spontaneously generated under conditions of very low effective stresses, facilitated by high pore fluid pressure, but it has also been suggested that variations in frictional behaviour, potentially caused by very heterogeneous fault zone lithology, may be required to promote slow slip.</p><p>Testing these hypotheses is difficult as it requires resolving rock properties at a high resolution many km below the seabed sometimes in km’s of water, where drilling is technically challenging and expensive. Traditional geophysical methods like travel-time tomography cannot provide fine-scale enough velocity models to probe the rock properties in fault zones specifically. In the last decade, however, computational power has improved to the point where 3D full-waveform inversion (FWI) methods make it possible to use the full wavefield rather than just travel times to produce seismic velocity models with a resolution an order of magnitude better than conventional models. Although the hydrocarbon industry have demonstrated many successful examples of 3D FWI the method requires extremely high density arrays of instruments, very different to the 2D transect data collection style which is still commonly employed at subduction zones.</p><p> The north Hikurangi subduction zone, New Zealand is special, as it hosts the world’s most well characterised shallow SSEs (<2 km to 15 km below the seabed).  This makes it an ideal location to collect 3D data optimally for FWI to resolve rock properties in the slow slip zone. In 2017-2018 an unprecedentedly large 3D experiment including 3D multi-channel seismic reflection, 99 ocean bottom seismometers and 194 onshore seismometers was conducted along the north Hikurangi margin in an 100 km x 15 km area, with an average 2 km instrument spacing. In addition, IODP Expeditions 372 and 375 collected logging-while drilling and core data, and deployed two bore-hole observatories to target slow slip in the same area. In this presentation I will introduce you to this world class 3D dataset and preliminary results, which will enable high resolution 3D models of physical properties to be made to bring slow slip processes into focus.  </p>


2020 ◽  
Author(s):  
Xiaoyu Guan ◽  
Yuanze Zhou ◽  
Takashi Furumura

<p>Fitting subduction zone guided waves with synthetics is an ideal choice for studying the velocity structure of the oceanic crust. After an earthquake occurs in subduction zones, seismic waves can be trapped in the low-velocity oceanic crust and propagated as guided waves. The arrival time and frequency characteristics of the guided waves can be used to image the velocity structure of the oceanic crust. The analysis and modeling based on guided wave observations provide a rare opportunity to understand the velocity structure of the oceanic crust and the variations in oceanic crustal materials during the subduction process.</p><p>High-frequency guided waves have been observed in the subduction zone of eastern Alaska. On several sections, observed seismograms recorded by seismic stations show low-frequency (<2Hz) onsets ahead of the main high-frequency (>2Hz) guided waves. Differences in the arrival times and dispersion characteristics of seismic phases are related to the velocity structure of the oceanic crust, and the characteristics of coda waves are related to the distribution of elongated scatters in the oceanic crust. Through fitting the observed broadband waveforms and synthetics modeled with the 2-D FDM (Finite Difference Method), we obtain the preferred oceanic crustal velocity models for several sections in the subduction zone of eastern Alaska. The preferred models can explain the seismic phase arrival times, dispersions, and coda characteristics in the observed waveforms. With the obtained P- and S- wave models of velocity structures on several sections, the material compositions they represent are deduced, and the variations of oceanic crustal materials during subducting can be understood. This provides new evidence for studying the details of the subduction process in the subduction zone of eastern Alaska.</p>


Geophysics ◽  
1985 ◽  
Vol 50 (12) ◽  
pp. 2480-2491 ◽  
Author(s):  
David P. Yale

The need to extract more information about the subsurface from geophysical and petrophysical measurements has led to a great interest in the study of the effect of rock and fluid properties on geophysical and petrophysical measurements. Rock physics research in the last few years has been concerned with studying the effect of lithology, fluids, pore geometry, and fractures on velocity; the mechanisms of attenuation of seismic waves; the effect of anisotropy; and the electrical and dielectric properties of rocks. Understanding the interrelationships between rock properties and their expression in geophysical and petrophysical data is necessary to integrate geophysical, petrophysical, and engineering data for the enhanced exploration and characterization of petroleum reservoirs. The use of amplitude offsets, S‐wave seismic data, and full‐waveform sonic data will help in the discrimination of lithology. The effect of in situ temperatures and pressures must be taken into account, especially in fractured and unconsolidated reservoirs. Fluids have a strong effect on seismic velocities, through their compressibility, density, and chemical effects on grain and clay surfaces. S‐wave measurements should help in bright spot analysis for gas reservoirs, but theoretical considerations still show that a deep, consolidated reservoir will not have any appreciable impedance contrast due to gas. The attenuation of seismic waves has received a great deal of attention recently. The idea that Q is independent of frequency has been challenged by experimental and theoretical findings of large peaks in attenuation in the low kHz and hundreds of kHz regions. The attenuation is thought to be due to fluid‐flow mechanisms and theories suggest that there may be large attenuation due to small amounts of gas in the pore space even at seismic frequencies. Models of the effect of pores, cracks, and fractures on seismic velocity have also been studied. The thin‐crack velocity models appear to be better suited for representing fractures than pores. The anisotropy of seismic waves, especially the splitting of polarized S‐waves, may be diagnostic of sets of oriented fractures in the crust. The electrical properties of rocks are strongly dependent upon the frequency of the energy and logging is presently being done at various frequencies. The effects of frequency, fluid salinity, clays, and pore‐grain geometry on electrical properties have been studied. Models of porous media have been used extensively to study the electrical and elastic properties of rocks. There has been great interest in extracting geometrical parameters about the rock and pore space directly from microscopic observation. Other models have focused on modeling several different properties to find relationships between rock properties.


Several different kinds of seismological data, spanning more than three orders of magnitude in frequency, have been employed in the study of the Earth’s large-scale three-dimensional structure. These yield different but overlapping information, which is leading to a coherent picture of the Earth’s internal heterogeneity. In this article we describe several methods of seismic inversion and intercom pare the resulting models. Models of upper-mantle shear velocity based upon mantle waveforms (Woodhouse & Dziewonski ( J. geophys. Res . 89 , 5953-5986 (1984))) ( f ≲ 7 mHz) and long-period body waveforms ( f ≲ 20 mHz; Woodhouse & Dziewonski ( Eos, Wash . 67 , 307 (1986))) show the mid-oceanic ridges to be the major low-velocity anomalies in the uppermost mantle, together with regions in the western Pacific, characterized by back-arc volcanism. High velocities are associated with the continents, and in particular with the continental shields, extending to depths in excess of 300 km. By assuming a given ratio between density and wave velocity variations, and a given mantle viscosity structure, such models have been successful in explaining some aspects of observed plate motion in terms of thermal convection in the mantle (Forte & Peltier ( J. geophys. Res . 92 , 3645-3679 (1987))). An im portant qualitative conclusion from such analysis is that the magnitude of the observed seismic anomalies is of the order expected in a convecting system having the viscosity, tem perature derivatives and flow rates which characterize the mantle. Models of the lower mantle based upon P-wave arrival times ( f ≈ 1 Hz; Dziewonski ( J. geophys. Res . 89 , 5929-5952 (1984)); Morelli & Dziewonski ( Eos, Wash . 67 , 311 (1986))) SH waveforms ( f ≈ mHz; Woodhouse & Dziewonski (1986)) and free oscillations (Giardini et al . ( Nature, Lond . 325 , 405-411 (1987); J. geophys. Res. 93 , 13716—13742 (1988))) ( f ≈ 0.5-5 mHz) show a very long wavelength pattern, largely contained in spherical harmonics of degree 2, which is present over a large range of depths (1000-2700 km). This anomaly has been detected in both compressional and shear wave velocities, and yields a ratio of relative perturbations in v s and v P in the lower mantle in the range 2-2.5. Such values, which are much larger than has sometimes been assumed, roughly correspond to the case that perturbations in shear modulus dominate those in bulk modulus. It is this anomaly that is mainly responsible for the observed low-degree geoid undulations (Hager et al. Nature, Lond . 313 , 541-545 (1985))). In the upper part of the lower mantle this pattern consists of a high-velocity feature skirting the subduction zones of the Pacific and extending from Indonesia to the Mediterranean, with low velocities elsewhere; thus it appears to be associated with plate convergence and subduction. The pattern of wave speeds in the lowermost mantle is such that approximately 80% of hot spots are in regions of lower than average velocities in the D" region. The topography of the core-mantle boundary, determined from the arrival times of reflected and transmitted waves (Morelli & Dziewonski ( Nature, Lond . 325 , 678-683 (1987))), exhibits a pattern of depressions encircling the Pacific, having an amplitude of approximately ± 5 km, which has been shown to be consistent with the stresses induced by density anomalies inferred from tom ographic models of the lower mantle (Forte & Peltier ( Tectonphysics (In the press.) (1989))). By using both free oscillations (Woodhouse et al . ( Geophys. Res. Lett . 13 , 1549-1552 (1986))) and travel-time data (Morelli et al . ( Geophys. Res. Lett . 13 , 1545—1548 (1986))), the inner core has been found to be anisotropic, exhibiting high velocities for waves propagating parallel to the Earth ’s rotation axis and low velocities in the equatorial plane. Tomographic models represent an instantaneous, low-resolution image of a convecting system. They require for their detailed interpretation knowledge of mineral and rock properties that are, as yet, poorly known but that laboratory experiments can potentially determ ine. The fact that the present distribution of seismic anomalies must represent the current configuration of therm al and compositional heterogeneity advected by m antle flow, imposes a complex set of constraints on the possible modes of convection in the m antle of which the implications have not yet been worked out; this will require num erical modelling of convection in three dimensions, which only recently has become feasible. Thus the interpretation of the ‘geographical’ information from seismology in terms of geodynamical processes is a matter of considerable complexity, and we may expect that a number of the conclusions to be drawn from the seismological results lie in the future.


Geophysics ◽  
2010 ◽  
Vol 75 (1) ◽  
pp. T1-T8 ◽  
Author(s):  
Steven Smith ◽  
Roel Snieder

We have developed seismic velocity models for the heated rock surrounding a tunnel in Yucca Mountain tuff and compared the results with field data obtained at the Yucca Mountain drift scale test (DST) facility from 1998 to 2002. During that time, the tunnel was heated to replicate the effects of long-term storage of decaying nuclear waste and to study the effects of extreme temperatures on the surrounding rock and groundwater flow. Our velocity models are based on borehole temperature data, thermal models, and laboratory measurements on granite. Comparisons between field and synthetic seismograms show that superheating the rock around the tunnel causes thermally induced variations in P- and S-wave arrival-time separation. Barring out-of-plane reflections, 2D spectral element waveform modeling in the source plane consistently replicates seismic receiver waveforms and classic behavior of pulses reflected from cylinders. Our models constrain the in situ [Formula: see text] velocity/temperature derivative of the tuff to be approximately [Formula: see text] per [Formula: see text]. This velocity change is consistent with thermally induced wavespeed changes in dry rock samples and is lower than expected for water-to-steam conversion in saturated rock. We infer that velocity changes are controlled by thermal expansion and fracturing. Additionally, we have developed an improved method for monitoring tunnel conditions that uses waves diffracted around the tunnel in the region of changing velocity.


Sign in / Sign up

Export Citation Format

Share Document