Taylor series expansion of prismatic gravitational field

2019 ◽  
Vol 220 (1) ◽  
pp. 610-660 ◽  
Author(s):  
Toshio Fukushima

SUMMARY The exact analytical formulae to compute the gravitational field of a rectangular prism suffer from round-off errors when the evaluation point is outside the Brillouin sphere of the prism. The error magnitude grows cubically with respect to the distance from the prism. This phenomenon is eminent in not only the gravitational potential but also the gravity vector and the gravity gradient tensor. Unfortunately, the issue of error increase is not settled efficiently by the rewriting of the formulae using the addition theorems of the transcendental functions. Besides, the computational labour of the formulae is not small since at least 18 transcendental functions are employed for the potential computation each time. In order to solve these problems, we developed up to the 16th order 3-D Taylor series expansion of all the gravitational field quantities for a uniform rectangular prism of arbitrary dimensions. For instance, the eighth order truncation guarantees the eight digit accuracy of the potential computation of a nearly cubic prism at the cost of 11 per cent of that of the fast computation of the exact formula when the distance is more than 2.7 times longer than the Brillouin sphere radius. By using a simple algorithm, we present an adaptive procedure combining the truncated series of various orders and the exact formulae in order to compute precisely and quickly the gravitational field of an assembly of prisms everywhere. Exactly the same approach is applicable to the geomagnetic field computation.

Author(s):  
Ruifei Peng ◽  
Haitian Yang ◽  
Yanni Xue

A package solution is presented for the full-scale bounds estimation of temperature in the nonlinear transient heat transfer problems with small or large uncertainties. When the interval scale is relatively small, an efficient Taylor series expansion-based bounds estimation of temperature is stressed on the acquirement of first and second-order derivatives of temperature with high fidelity. When the interval scale is relatively large, an optimization-based approach in conjunction with a dimension-adaptive sparse grid (DSG) surrogate is developed for the bounds estimation of temperature, and the heavy computational burden of repeated deterministic solutions of nonlinear transient heat transfer problems can be efficiently alleviated by the DSG surrogate. A temporally piecewise adaptive algorithm with high fidelity is employed to gain the deterministic solution of temperature, and is further developed for recursive adaptive computing of the first and second-order derivatives of temperature. Therefore, the implementation of Taylor series expansion and the construction of DSG surrogate are underpinned by a reliable numerical platform. The parallelization is utilized for the construction of DSG surrogate for further acceleration. The accuracy and efficiency of the proposed approaches are demonstrated by two numerical examples.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3242 ◽  
Author(s):  
Ke Wei Zhang ◽  
Gang Hao ◽  
Shu Li Sun

The multi-sensor information fusion particle filter (PF) has been put forward for nonlinear systems with correlated noises. The proposed algorithm uses the Taylor series expansion method, which makes the nonlinear measurement functions have a linear relationship by the intermediary function. A weighted measurement fusion PF (WMF-PF) was put forward for systems with correlated noises by applying the full rank decomposition and the weighted least square theory. Compared with the augmented optimal centralized fusion particle filter (CF-PF), it could greatly reduce the amount of calculation. Moreover, it showed asymptotic optimality as the Taylor series expansion increased. The simulation examples illustrate the effectiveness and correctness of the proposed algorithm.


2017 ◽  
Vol 25 (3) ◽  
pp. 199-214
Author(s):  
S.P. Vijayalakshmi ◽  
T.V. Sudharsan ◽  
Daniel Breaz ◽  
K.G. Subramanian

Abstract Let A be the class of analytic functions f(z) in the unit disc ∆ = {z ∈ C : |z| < 1g with the Taylor series expansion about the origin given by f(z) = z+ ∑n=2∞ anzn, z ∈∆ : The focus of this paper is on deriving upper bounds for the third order Hankel determinant H3(1) for two new subclasses of A.


2018 ◽  
Vol 34 (4) ◽  
pp. 561-594 ◽  
Author(s):  
Mingzhou Yu ◽  
Jianzhong Lin

Abstract Population balance equations (PBE) are widely applied to describe many physicochemical processes such as nanoparticle synthesis, chemical processes for particulates, colloid gel, aerosol dynamics, and disease progression. The numerical study for solving the PBE, i.e. population balance modeling, is undergoing rapid development. In this review, the application of the Taylor series expansion scheme in solving the PBE was discussed. The theories, implement criteria, and applications are presented here in a universal form for ease of use. The aforementioned method is mathematically economical and applicable to the combination of fine-particle physicochemical processes and can be used to numerically and pseudo-analytically describe the time evolution of statistical parameters governed by the PBE. This article summarizes the principal details of the method and discusses its application to engineering problems. Four key issues relevant to this method, namely, the optimization of type of moment sequence, selection of Taylor series expansion point, optimization of an order of Taylor series expansion, and selection of terms for Taylor series expansion, are emphasized. The possible direction for the development of this method and its advantages and shortcomings are also discussed.


Sign in / Sign up

Export Citation Format

Share Document