scholarly journals Mucous granule exocytosis and CFTR expression in gallbladder epithelium

Glycobiology ◽  
2000 ◽  
Vol 10 (2) ◽  
pp. 149-157 ◽  
Author(s):  
R. Kuver
2021 ◽  
Author(s):  
Ryo Ninomiya ◽  
Shuichi Kubo ◽  
Tooru Kajiwara ◽  
Hiroko Koizumi ◽  
Akinori Tokunaga ◽  
...  

Abstract Helicobacter pylori infection is the strongest known risk factor of stomach cancer. Strains harboring the virulence factor CagA (cytotoxin-associated gene A) significantly stimulate host inflammatory response, which increases the risk of ulceration and cancer. However, the mechanisms by which CagA triggers prolonged inflammation with mucosal damage remain elusive. Based on a large-scale genetic screen using Drosophila, we identified a novel CagA target Synaptotagmin-like protein 2-a, Slp2-a, an effector of small GTPase Rab27. Using gastric organoid-derived monolayers of polarized mucous cells, we demonstrated that CagA inhibited Slp2-a-mediated docking of mucous granules to the plasma membrane by direct binding to Slp2-a. We further observed aberrant cytoplasmic retention of mucus in human gastric mucosa infected with CagA-expressing strains. These results suggest that CagA could be disrupting the protective mucous barrier by inhibiting Slp2-a-mediated mucous granule exocytosis, which may lead to mucosal damage from luminal acid and pepsin to promote inflammation leading to cancer.


Author(s):  
G. I. Kaye ◽  
J. D. Cole

For a number of years we have used an adaptation of Komnick's KSb(OH)6-OsO4 fixation method for the localization of sodium in tissues in order to study transporting epithelia under a number of different conditions. We have shown that in actively transporting rabbit gallbladder epithelium, large quantities of NaSb(OH)6 precipitate are found in the distended intercellular compartment, while localization of precipitate is confined to the inner side of the lateral plasma membrane in inactive gallbladder epithelium. A similar pattern of distribution of precipitate has been demonstrated in human and rabbit colon in active and inactive states and in the inactive colonic epithelium of hibernating frogs.


2001 ◽  
Vol 120 (5) ◽  
pp. A386-A386 ◽  
Author(s):  
S NARINS ◽  
E PARK ◽  
X SU ◽  
P SMITH ◽  
M ABEDIN

2001 ◽  
Vol 120 (5) ◽  
pp. A386-A386
Author(s):  
S NARINS ◽  
J DOUGHERTY ◽  
E PARK ◽  
R NICHOLS ◽  
P SMITH ◽  
...  

2019 ◽  
Vol 235 (5) ◽  
pp. 4351-4360
Author(s):  
Matías D. Gómez‐Elías ◽  
Rafael A. Fissore ◽  
Patricia S. Cuasnicú ◽  
Débora J. Cohen

1992 ◽  
Vol 99 (2) ◽  
pp. 241-262 ◽  
Author(s):  
G A Altenberg ◽  
J S Stoddard ◽  
L Reuss

In Necturus gallbladder epithelium, lowering serosal [Na+] ([Na+]s) reversibly hyperpolarized the basolateral cell membrane voltage (Vcs) and reduced the fractional resistance of the apical membrane (fRa). Previous results have suggested that there is no sizable basolateral Na+ conductance and that there are apical Ca(2+)-activated K+ channels. Here, we studied the mechanisms of the electrophysiological effects of lowering [Na+]s, in particular the possibility that an elevation in intracellular free [Ca2+] hyperpolarizes Vcs by increasing gK+. When [Na+]s was reduced from 100.5 to 10.5 mM (tetramethylammonium substitution), Vcs hyperpolarized from -68 +/- 2 to a peak value of -82 +/- 2 mV (P less than 0.001), and fRa decreased from 0.84 +/- 0.02 to 0.62 +/- 0.02 (P less than 0.001). Addition of 5 mM tetraethylammonium (TEA+) to the mucosal solution reduced both the hyperpolarization of Vcs and the change in fRa, whereas serosal addition of TEA+ had no effect. Ouabain (10(-4) M, serosal side) produced a small depolarization of Vcs and reduced the hyperpolarization upon lowering [Na+]s, without affecting the decrease in fRa. The effects of mucosal TEA+ and serosal ouabain were additive. Neither amiloride (10(-5) or 10(-3) M) nor tetrodotoxin (10(-6) M) had any effects on Vcs or fRa or on their responses to lowering [Na+]s, suggesting that basolateral Na+ channels do not contribute to the control membrane voltage or to the hyperpolarization upon lowering [Na+]s. The basolateral membrane depolarization upon elevating [K+]s was increased transiently during the hyperpolarization of Vcs upon lowering [Na+]s. Since cable analysis experiments show that basolateral membrane resistance increased, a decrease in basolateral Cl- conductance (gCl-) is the main cause of the increased K+ selectivity. Lowering [Na+]s increases intracellular free [Ca2+], which may be responsible for the increase in the apical membrane TEA(+)-sensitive gK+. We conclude that the decrease in fRa by lowering [Na+]s is mainly caused by an increase in intracellular free [Ca2+], which activates TEA(+)-sensitive maxi K+ channels at the apical membrane and decreases apical membrane resistance. The hyperpolarization of Vcs is due to increase in: (a) apical membrane gK+, (b) the contribution of the Na+ pump to Vcs, (c) basolateral membrane K+ selectivity (decreased gCl-), and (d) intraepithelial current flow brought about by a paracellular diffusion potential.


2009 ◽  
Vol 254 (2) ◽  
pp. 105-109 ◽  
Author(s):  
Arun T. Pores-Fernando ◽  
Surabhi Gaur ◽  
Michelle Y. Doyon ◽  
Adam Zweifach

2009 ◽  
Vol 296 (4) ◽  
pp. C857-C867 ◽  
Author(s):  
Silvia M. Uriarte ◽  
Neelakshi R. Jog ◽  
Gregory C. Luerman ◽  
Samrath Bhimani ◽  
Richard A. Ward ◽  
...  

We have recently reported that disruption of the actin cytoskeleton enhanced N-formylmethionyl-leucyl-phenylalanine (fMLP)-stimulated granule exocytosis in human neutrophils but decreased plasma membrane expression of complement receptor 1 (CR1), a marker of secretory vesicles. The present study was initiated to determine if reduced CR1 expression was due to fMLP-stimulated endocytosis, to determine the mechanism of this endocytosis, and to examine its impact on neutrophil functional responses. Stimulation of neutrophils with fMLP or ionomycin in the presence of latrunculin A resulted in the uptake of Alexa fluor 488-labeled albumin and transferrin and reduced plasma membrane expression of CR1. These effects were prevented by preincubation of the cells with sucrose, chlorpromazine, or monodansylcadaverine (MDC), inhibitors of clathrin-mediated endocytosis. Sucrose, chlorpromazine, and MDC also significantly inhibited fMLP- and ionomycin-stimulated specific and azurophil granule exocytosis. Disruption of microtubules with nocodazole inhibited endocytosis and azurophil granule exocytosis stimulated by fMLP in the presence of latrunculin A. Pharmacological inhibition of phosphatidylinositol 3-kinase, ERK1/2, and PKC significantly reduced fMLP-stimulated transferrin uptake in the presence of latrunculin A. Blockade of clathrin-mediated endocytosis had no significant effect on fMLP-stimulated phosphorylation of ERK1/2 in neutrophils pretreated with latrunculin A. From these data, we conclude that the actin cytoskeleton functions to limit microtubule-dependent, clathrin-mediated endocytosis in stimulated human neutrophils. The limitation of clathrin-mediated endocytosis by actin regulates the extent of both specific and azurophilic granule exocytosis.


Sign in / Sign up

Export Citation Format

Share Document