A donor splice mutation (405 + 1 G → A) in cystic fibrosis associated with exon skipping in epithelial CFTR mRNA

1993 ◽  
Vol 2 (11) ◽  
pp. 1965-1966 ◽  
Author(s):  
Thilo Dork ◽  
Katrin Will ◽  
Annette Demmer ◽  
Burkhard Tummler
2001 ◽  
Vol 24 (3) ◽  
pp. 345-351 ◽  
Author(s):  
M. Skrygan ◽  
B. Bartholomé ◽  
L. Bonafé ◽  
N. Blau ◽  
K. Bartholomé

1994 ◽  
Vol 266 (1) ◽  
pp. C213-C221 ◽  
Author(s):  
M. A. Gray ◽  
J. P. Winpenny ◽  
D. J. Porteous ◽  
J. R. Dorin ◽  
B. E. Argent

We have studied the cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride currents in pancreatic duct cells isolated from a transgenic cf/cf mouse created by targeted insertional mutagenesis. Adenosine 3',5'-cyclic monophosphate (cAMP)-activated CFTR chloride currents were detected in 78% (29/37) of wild-type cells, in 81% (35/43) of heterozygote cells, and in 61% (29/47) of homozygous cf/cf duct cells (P > 0.05, cf/cf vs. wild-type and heterozygote). The CFTR current density measured at membrane potentials of +/- 60 mV averaged 22-26 pA/pF in wild-type and heterozygote groups but only 13 pA/pF in cells derived from cf/cf animals (P < 0.05, cf/cf vs. wild-type and cf/cf vs. heterozygotes). In contrast, duct cells from animals of all three genotypic groups exhibited calcium-activated chloride currents that were of similar magnitude and up to 11-fold larger than the CFTR currents. We speculate that these transgenic insertional null mice do not develop the pancreatic pathology that occurs in cystic fibrosis patients because their duct cells contain 1) some wild-type CFTR generated by exon skipping and aberrant splicing and 2) a separate anion secretory pathway mediated by calcium-activated chloride channels.


1999 ◽  
Vol 13 (6) ◽  
pp. 504-504 ◽  
Author(s):  
Katharina M�ller-Morlang ◽  
Kamiab Tavassoli ◽  
Antonin Eigel ◽  
Hartmut Pollmann ◽  
J�rgen Horst

1997 ◽  
Vol 17 (6) ◽  
pp. 2985-2993 ◽  
Author(s):  
P G Zaphiropoulos

The cytochrome P-450 2C18 gene was found by reverse transcription-PCR to represent the most abundantly expressed gene of the P-450 2C subfamily in human epidermis. However, in addition to the canonical mRNA of nine exons, transcripts that have skipped exon 4 or 5, exons 4, 5, and 6, or exons 4, 5, 6, and 7 were also identified in this tissue. Remarkably, circular RNA transcripts synthesized by the joining of the donor and acceptor splice sites of the same exon were detected in human epidermis for exons 4 and 5. Moreover, molecules composed of exons 4, 5, and 6 with the donor splice site of exon 6 joined to the acceptor splice site of exon 4 or composed of exons 4, 5, 6, and 7 with the donor splice site of exon 7 joined to the acceptor splice site of exon 4 were also found to be present in this tissue. In rat testis, a similar analysis allowed the detection of a circular RNA molecule composed of exons 6 and 7 of the androgen binding protein (ABP) gene, with the donor splice site of exon 7 joined to the acceptor splice site of exon 6, and of an ABP mRNA which had skipped exons 6 and 7. These results apparently substantiate the hypothesis that alternative pre-mRNA splicing has the potential to generate not only mRNAs that lack one or more exons but also circular RNA molecules that are composed of the exons that are skipped. However, additional 2C18 circular species containing various combinations of exons were also detected in human epidermis, and an exon 6-skipped ABP mRNA molecule was identified in rat testis. This observation is interpreted as indicative that at low frequency, numerous circular RNA formation and exon skipping events may occur, allowing the joining of a variety of different combinations of exons. Moreover, the relative stability of these molecules is apparently the key factor that determines the relative ease of their detection.


Life ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Giovana Bampi ◽  
Anabela Ramalho ◽  
Leonardo Santos ◽  
Johannes Wagner ◽  
Lieven Dupont ◽  
...  

Synonymous single nucleotide polymorphisms (sSNPs), which change a nucleotide, but not the encoded amino acid, are perceived as neutral to protein function and thus, classified as benign. We report a patient who was diagnosed with cystic fibrosis (CF) at an advanced age and presented very mild CF symptoms. The sequencing of the whole cystic fibrosis transmembrane conductance regulator (CFTR) gene locus revealed that the patient lacks known CF-causing mutations. We found a homozygous sSNP (c.1584G>A) at the end of exon 11 in the CFTR gene. Using sensitive molecular methods, we report that the c.1584G>A sSNP causes cognate exon skipping and retention of a sequence from the downstream intron, both of which, however, occur at a relatively low frequency. In addition, we found two other sSNPs (c.2562T>G (p.Thr854=) and c.4389G>A (p.Gln1463=)), for which the patient is also homozygous. These two sSNPs stabilize the CFTR protein expression, compensating, at least in part, for the c.1584G>A-triggered inefficient splicing. Our data highlight the importance of considering sSNPs when assessing the effect(s) of complex CFTR alleles. sSNPs may epistatically modulate mRNA and protein expression levels and consequently influence disease phenotype and progression.


Sign in / Sign up

Export Citation Format

Share Document