Mutations in the type IV collagen α3 (COL4A3) gene in autosomal recessive Alport syndrome

1994 ◽  
Vol 3 (8) ◽  
pp. 1269-1273 ◽  
Author(s):  
Henny H. Lemmink ◽  
Toshlo MochlzukJ ◽  
Lambertus P.W.J. van den Heuvel ◽  
Cornells H. Schröder ◽  
Alberto Barrientos ◽  
...  
2001 ◽  
Vol 12 (1) ◽  
pp. 97-106
Author(s):  
LAURENCE HEIDET ◽  
CHRISTELLE ARRONDEL ◽  
LIONEL FORESTIER ◽  
LOLA COHEN-SOLAL ◽  
GERALDINE MOLLET ◽  
...  

Abstract. Mutations in either the COL4A3 or the COL4A4 genes, encoding the α3 and α4 chains of type IV collagen, are responsible for the autosomal-recessive form of Alport syndrome, a progressive hematuric nephropathy characterized by glomerular basement membrane abnormalities. Reported here are the complete COL4A3 exon-intron structure and a comprehensive screen for mutations of the 52 COL4A3 exons in 41 unrelated patients diagnosed as having autosomal Alport syndrome. This resulted in the identification of 21 mutations that are expected to be causative. Furthermore, it is shown that heterozygous COL4A3 missense mutations, when symptomatic, can be associated with a broad range of phenotypes, from familial benign hematuria to the complete features of Alport syndrome nephropathy.


1995 ◽  
Vol 5 (9) ◽  
pp. 1714-1717
Author(s):  
J Ding ◽  
J Stitzel ◽  
P Berry ◽  
E Hawkins ◽  
C E Kashtan

Autosomal recessive Alport syndrome can arise from a mutation in either of the genes COL4A3 and COL4A4 on chromosome 2, which encode, respectively, the alpha 3 and alpha 4 chains of Type IV collagen. This report describes a mutation in COL4A3 in a girl who presented at age 5 with hematuria and proteinuria, lacking any family history of renal disease. Renal biopsy at age 8 showed immunoglobulin A nephropathy and Alport syndrome. Sensorineural deafness developed during adolescence, and the patient's renal disease progressed to terminal renal failure by age 20. She received a living related donor renal allograft at age 20 and developed antiglomerular basement membrane nephritis of the allograft 8 months after transplantation. Amplification and sequencing of exon 5 of COL4A3 (counting from the 3' end of the gene) revealed a 7-base-pair deletion, producing a shift of the reading frame and the creation of a premature stop codon. Each parent was heterozygous for the normal and mutant exon 5 sequences. This mutation in COL4A3 would result in the loss of 222 amino acids from the carboxy-terminal noncollagenous domain of the alpha 3(IV) chain. The mutant chain would be unable to form trimers with other Type IV collagen alpha chains. In addition, the mutant chain would lack the Goodpasture epitope, which resides in the carboxy-terminal noncollagenous domain of the alpha 3(IV) chain. The absence of this epitope may underly the subsequent development of anti-glomerular basement membrane nephritis in the allograft.


2009 ◽  
Vol 133 (2) ◽  
pp. 224-232 ◽  
Author(s):  
Mark Haas

Abstract Context.—Alport syndrome and thin glomerular basement membrane nephropathy (TBMN) are genetically heterogenous conditions characterized by structural abnormalities in the glomerular basement membrane and an initial presentation that usually involves hematuria. Approximately 40% of patients with TBMN are heterozygous carriers for autosomal recessive Alport syndrome, with mutations at the genetic locus encoding type IV collagen α3 [α3(IV)] and α4 chains. However, although the clinical course of TBMN is usually benign, Alport syndrome, particularly the X-linked form with mutations in the locus encoding the α5 chain of type IV collagen [α5(IV)], typically results in end-stage renal disease. Electron microscopy is essential to diagnosis of TBMN and Alport syndrome on renal biopsy, although electron microscopy alone is of limited value in distinguishing between TBMN, the heterozygous carrier state of X-linked Alport syndrome, autosomal recessive Alport syndrome, and even early stages of X-linked Alport syndrome. Objectives.—To review diagnostic pathologic features of each of the above conditions, emphasizing the need for immunohistology for α3(IV) and α5(IV) in addition to electron microscopy to resolve this differential diagnosis on a renal biopsy. The diagnostic value of immunofluorescence studies for α5(IV) on a skin biopsy in family members of patients with Alport syndrome also is reviewed. Data Sources.—Original and comprehensive review articles on the diagnosis of Alport syndrome and TBMN from the past 35 years, primarily the past 2 decades, and experience in our own renal pathology laboratory. Conclusions.—Although Alport syndrome variants and TBMN do not show characteristic light microscopic findings and can be difficult to differentiate from each other even by electron microscopy, using a combination of electron microscopy and immunohistology for α3(IV) and α5(IV) enables pathologists to definitively diagnose these disorders on renal biopsy in most cases.


1995 ◽  
Vol 47 (4) ◽  
pp. 1142-1147 ◽  
Author(s):  
Marie-Claire Gubler ◽  
Bertrand Knebelmann ◽  
Agnès Beziau ◽  
Michel Broyer ◽  
Yves Pirson ◽  
...  

2017 ◽  
Vol 6 (1) ◽  
pp. 1-7
Author(s):  
Elise Alexandra Kikis ◽  
Emily Holland Williams

Alport syndrome is a type IV collagen disease that affects the glomerular basement membrane of approximately one in every 5000 people. The disease was first described by A. Cecil Alport in 1927 as “a dominantly inherited hereditary nephritis.” The three genotypes of the disease are X-linked dominant, autosomal recessive, and autosomal dominant. The X-linked dominant genotype is the most common, accounting for 80% of all cases of Alport syndrome, affecting mainly men. The autosomal recessive and autosomal dominant types affect men and women equally. Alport syndrome is caused by mutations on the COL4A3, COL4A4, and COL4A5 genes, which code the ?3, ?4, and ?5 (IV) chains that make up type IV collagen molecules, an important component of basement membranes. Thus, Alport syndrome results in malformed basement membranes, with symptoms including renal impairment, hematuria, bilateral sensorineural hearing loss, and an abnormal structure of the glomerular basement membrane. Alport syndrome also often progresses to end-stage renal disease, especially in men with X-linked Alport syndrome. At this point, there is no cure for Alport syndrome. However, there are many successful treatments for its symptoms. Angiotensin-converting enzyme (ACE) inhibitors are often given to patients in the early stages of Alport syndrome. For patients with end-stage renal disease, dialysis or kidney transplants are considered the best course of action.


1992 ◽  
Vol 42 (1) ◽  
pp. 179-187 ◽  
Author(s):  
Billy G. Hudson ◽  
Raghuram Kalluri ◽  
Sripad Gunwar ◽  
Manfred Weber ◽  
Fernando Ballester ◽  
...  

2005 ◽  
Vol 131 (11) ◽  
pp. 1007 ◽  
Author(s):  
Andreas F. Zehnder ◽  
Joe C. Adams ◽  
Peter A. Santi ◽  
Arthur G. Kristiansen ◽  
Chitsuda Wacharasindhu ◽  
...  

2021 ◽  
Author(s):  
Masumi Namba ◽  
Tomoe Kobayashi ◽  
Mayumi Kohno ◽  
Takayuki Koyano ◽  
Takuo Hirose ◽  
...  

Alport syndrome is an inherited chronic human kidney disease, characterized by glomerular basement membrane abnormalities. This disease is caused by mutations in COL4A3, COL4A4, or COL4A5 gene. The knockout mice for Col4α3, Col4α4, and Col4α5 are developed and well characterized for the study of Alport syndrome. However, disease progression and effects of pharmacological therapy depend on the genetic variability. This model is reliable only to mice. Therefore in this study, we created a novel Alport syndrome rat model utilizing rGONAD technology. Col4α5 deficient rats showed hematuria, proteinuria, high levels of BUN, Cre, and then died at 18 to 28 weeks of age (Hemizygous mutant males). Histological and ultrastructural analyses displayed the abnormalities including parietal cell hyperplasia, mesangial sclerosis, and interstitial fibrosis. Then, we demonstrated that α3/α4/α5 (IV) and α5/α5/α6 (IV) chains of type IV collagen disrupted in the Col4α5 deficient rats. Moreover, immunofluorescence analyses revealed that some glomeruli of Col4α5 mutant rats were found to be disrupted from postnatal day 0. Thus, Col4α5 mutant rat is a reliable candidate for Alport syndrome model for underlying the mechanism of renal diseases and further identifying potential therapeutic targets for human renal diseases.


Author(s):  
K.-O. Netzer ◽  
O. Gross ◽  
C. Jung ◽  
R. Kirsten ◽  
S. Seibold ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document