scholarly journals The DNA damage response (DDR) is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis

2017 ◽  
Vol 26 (15) ◽  
pp. 2882-2896 ◽  
Author(s):  
Manal A. Farg ◽  
Anna Konopka ◽  
Kai Ying Soo ◽  
Daisuke Ito ◽  
Julie D. Atkin
2018 ◽  
Vol 19 (10) ◽  
pp. 3137 ◽  
Author(s):  
Anna Konopka ◽  
Julie Atkin

Amyotrophic lateral sclerosis (ALS) is a fatal, rapidly progressing neurodegenerative disease affecting motor neurons, and frontotemporal dementia (FTD) is a behavioural disorder resulting in early-onset dementia. Hexanucleotide (G4C2) repeat expansions in the gene encoding chromosome 9 open reading frame 72 (C9orf72) are the major cause of familial forms of both ALS (~40%) and FTD (~20%) worldwide. The C9orf72 repeat expansion is known to form abnormal nuclei acid structures, such as hairpins, G-quadruplexes, and R-loops, which are increasingly associated with human diseases involving microsatellite repeats. These configurations form during normal cellular processes, but if they persist they also damage DNA, and hence are a serious threat to genome integrity. It is unclear how the repeat expansion in C9orf72 causes ALS, but recent evidence implicates DNA damage in neurodegeneration. This may arise from abnormal nucleic acid structures, the greatly expanded C9orf72 RNA, or by repeat-associated non-ATG (RAN) translation, which generates toxic dipeptide repeat proteins. In this review, we detail recent advances implicating DNA damage in C9orf72-ALS. Furthermore, we also discuss increasing evidence that targeting these aberrant C9orf72 confirmations may have therapeutic value for ALS, thus revealing new avenues for drug discovery for this disorder.


2019 ◽  
Vol 13 ◽  
pp. 117906951988016 ◽  
Author(s):  
Joy Mitra ◽  
Muralidhar L Hegde

Amyotrophic lateral sclerosis (ALS) is a devastating, motor neuron degenerative disease without any cure. About 95% of the ALS patients feature abnormalities in the RNA/DNA-binding protein, TDP-43, involving its nucleo-cytoplasmic mislocalization in spinal motor neurons. How TDP-43 pathology triggers neuronal apoptosis remains unclear. In a recent study, we reported for the first time that TDP-43 participates in the DNA damage response (DDR) in neurons, and its nuclear clearance in spinal motor neurons caused DNA double-strand break (DSB) repair defects in ALS. We documented that TDP-43 was a key component of the non-homologous end joining (NHEJ) pathway of DSB repair, which is likely the major pathway for repair of DSBs in post-mitotic neurons. We have also uncovered molecular insights into the role of TDP-43 in DSB repair and showed that TDP-43 acts as a scaffold in recruiting the XRCC4/DNA Ligase 4 complex at DSB damage sites and thus regulates a critical rate-limiting function in DSB repair. Significant DSB accumulation in the genomes of TDP-43-depleted, human neural stem cell-derived motor neurons as well as in ALS patient spinal cords with TDP-43 pathology, strongly supported a TDP-43 involvement in genome maintenance and toxicity-induced genome repair defects in ALS. In this commentary, we highlight our findings that have uncovered a link between TDP-43 pathology and impaired DNA repair and suggest potential possibilities for DNA repair-targeted therapies for TDP-43-ALS.


2020 ◽  
Vol 64 (5) ◽  
pp. 847-861 ◽  
Author(s):  
Yu Sun ◽  
Annabel J. Curle ◽  
Arshad M. Haider ◽  
Gabriel Balmus

Abstract Amyotrophic lateral sclerosis (ALS) is a rapidly disabling and fatal neurodegenerative disease. Due to insufficient disease-modifying treatments, there is an unmet and urgent need for elucidating disease mechanisms that occur early and represent common triggers in both familial and sporadic ALS. Emerging evidence suggests that impaired DNA damage response contributes to age-related somatic accumulation of genomic instability and can trigger or accelerate ALS pathological manifestations. In this review, we summarize and discuss recent studies indicating a direct link between DNA damage response and ALS. Further mechanistic understanding of the role genomic instability is playing in ALS disease pathophysiology will be critical for discovering new therapeutic avenues.


2012 ◽  
Vol 69 (9) ◽  
Author(s):  
Hiroyuki Ishiura ◽  
Yuji Takahashi ◽  
Jun Mitsui ◽  
Sohei Yoshida ◽  
Tameko Kihira ◽  
...  

2012 ◽  
Vol 33 (10) ◽  
pp. 2527.e11-2527.e16 ◽  
Author(s):  
Kotaro Ogaki ◽  
Yuanzhe Li ◽  
Naoki Atsuta ◽  
Hiroyuki Tomiyama ◽  
Manabu Funayama ◽  
...  

2017 ◽  
Vol 373 ◽  
pp. 55-57 ◽  
Author(s):  
Abhishek Vats ◽  
Mandaville Gourie-Devi ◽  
Varun Suroliya ◽  
Sagar Verma ◽  
Mohammad Faruq ◽  
...  

2019 ◽  
Vol 139 (1) ◽  
pp. 99-118 ◽  
Author(s):  
Yoshihiro Nihei ◽  
◽  
Kohji Mori ◽  
Georg Werner ◽  
Thomas Arzberger ◽  
...  

Abstract Repeat expansion in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Expanded sense and antisense repeat RNA transcripts in C9orf72 are translated into five dipeptide-repeat proteins (DPRs) in an AUG-independent manner. We previously identified the heterogeneous ribonucleoprotein (hnRNP) A3 as an interactor of the sense repeat RNA that reduces its translation into DPRs. Furthermore, we found that hnRNPA3 is depleted from the nucleus and partially mislocalized to cytoplasmic poly-GA inclusions in C9orf72 patients, suggesting that poly-GA sequesters hnRNPA3 within the cytoplasm. We now demonstrate that hnRNPA3 also binds to the antisense repeat RNA. Both DPR production and deposition from sense and antisense RNA repeats are increased upon hnRNPA3 reduction. All DPRs induced DNA double strand breaks (DSB), which was further enhanced upon reduction of hnRNPA3. Poly-glycine–arginine and poly-proline-arginine increased foci formed by phosphorylated Ataxia Telangiectasia Mutated (pATM), a major sensor of DSBs, whereas poly-glycine–alanine (poly-GA) evoked a reduction of pATM foci. In dentate gyri of C9orf72 patients, lower nuclear hnRNPA3 levels were associated with increased DNA damage. Moreover, enhanced poly-GA deposition correlated with reduced pATM foci. Since cytoplasmic pATM deposits partially colocalized with poly-GA deposits, these results suggest that poly-GA, the most frequent DPR observed in C9orf72 patients, differentially causes DNA damage and that poly-GA selectively sequesters pATM in the cytoplasm inhibiting its recruitment to sites of DNA damage. Thus, mislocalization of nuclear hnRNPA3 caused by poly-GA leads to increased poly-GA production, which partially depletes pATM, and consequently enhances DSB.


Sign in / Sign up

Export Citation Format

Share Document