scholarly journals Genome-wide meta-analysis and replication studies in multiple ethnicities identify novel adolescent idiopathic scoliosis susceptibility loci

2018 ◽  
Vol 27 (22) ◽  
pp. 3986-3998 ◽  
Author(s):  
Anas M Khanshour ◽  
Ikuyo Kou ◽  
Yanhui Fan ◽  
Elisabet Einarsdottir ◽  
Nadja Makki ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Ming Luo ◽  
Yuxiao Zhang ◽  
Shishu Huang ◽  
Yueming Song

Genome-wide association studies have identified many susceptibility genes for adolescent idiopathic scoliosis (AIS). However, most of the results are hard to be replicated in multi-ethnic populations. LBX1 is the most promising candidate gene in the etiology of AIS. We aimed to appraise the literature for the association of LBX1 gene polymorphisms with susceptibility and curve progression in AIS. We also reviewed the function of the LBX1 gene in muscle progenitor cell migration and neuronal determination processes. Three susceptibility loci (rs11190870, rs625039, and rs11598564) near the LBX1 gene, as well as another susceptibility locus (rs678741), related to LBX1 regulation, have been successfully verified to have robust associations with AIS in multi-ethnic populations. The LBX1 gene plays an essential role in regulating the migration and proliferation of muscle precursor cells, and it is known to play a role in neuronal determination processes, especially for the fate of somatosensory relay neurons. The LBX1 gene is the most promising candidate gene in AIS susceptibility due to its position and possible functions in muscle progenitor cell migration and neuronal determination processes. The causality between susceptibility loci related to the LBX1 gene and the pathogenesis of AIS deserves to be explored with further integrated genome-wide and epigenome-wide association studies.


Spine ◽  
1995 ◽  
Vol 20 (14) ◽  
pp. 1575-1584 ◽  
Author(s):  
Thomas R. Haher ◽  
Andrew Merola ◽  
Richard I. Zipnick ◽  
John Gorup ◽  
Dana Mannor ◽  
...  

Author(s):  
Mohamed Elrayess ◽  
Fatima Al-Khelaifi ◽  
Noha Yousri ◽  
Omar Al-Bagha

Research into the genetic predisposition to superior athletic performance has been a hindered by the underpowered studies and the small effect size of identified genetic variants. The aims of this study were to investigate the association of common single-nucleotide polymorphisms (SNPs) with endurance athlete status in a large cohort of elite European athletes using GWAS approach, followed by replication studies in Russian and Japanese elite athletes and functional validation using metabolomics analysis. Results: The association of 476,728 SNPs of Illumina DrugCore Gene chip and endurance athlete status was investigated in 796 European international-level athletes (645 males, 151 females) by comparing allelic frequencies between athletes specialized in sports with high (n=662) and low/moderate (n=134) aerobic component. Validation of results was performed by comparing the frequencies of the most significant SNPs between 242 and 168 elite Russian high and low/moderate aerobic athletes, respectively, and between 60 elite Japanese endurance athletes and 406 controls. A meta-analysis has identified rs1052373 (GG homozygotes) in Myosin Binding Protein (MYBPC3; implicated in cardiac hypertrophic myopathy) gene to be associated with endurance athlete status (P=1.43E-08, odd ratio 2.2). Homozygotes carriers of rs1052373 G allele in Russian athletes had significantly greater VO2max than carriers of the AA+AG (P = 0.005). Subsequent metabolomics analysis revealed several amino acids and lipids associated with rs1052373 G allele (1.82x10-05) including the testosterone precursor androstenediol (3beta, 17beta) disulfate. Conclusion: This is the first report of genome-wide significant SNP and related metabolites associated with elite athlete status. Further investigations of the functional relevance of the identified SNPs and metabolites in relation to enhanced athletic performance are warranted.


2020 ◽  
Author(s):  
Nadja Makki ◽  
Jingjing Zhao ◽  
Zhaoyang Liu ◽  
Walter L. Eckalbar ◽  
Aki Ushiki ◽  
...  

AbstractAdolescent idiopathic scoliosis (AIS), a sideways curvature of the spine, is the most common pediatric musculoskeletal disorder, affecting ∼3% of the population worldwide. However, its genetic bases and tissues of origin remain largely unknown. Several genome-wide association studies (GWAS) have implicated nucleotide variants in noncoding sequences that control genes with important roles in cartilage, muscle, bone, connective tissue and intervertebral discs (IVDs) as drivers of AIS susceptibility. Here, we set out to define the expression of AIS-associated genes and active regulatory elements by performing RNA-seq and ChIP-seq against H3K27ac in these tissues in mouse and human. Our study highlights genetic pathways involving AIS-associated loci that regulate chondrogenesis, IVD development and connective tissue maintenance and homeostasis. In addition, we identify thousands of putative AIS-associated regulatory elements which may orchestrate tissue-specific expression in musculoskeletal tissues of the spine. Quantification of enhancer activity of several candidate regulatory elements from our study identifies three functional enhancers carrying AIS-associated GWAS SNPs at the ADGRG6 and BNC2 loci. Our findings provide a novel genome-wide catalog of AIS-relevant genes and regulatory elements and aid in the identification of novel targets for AIS causality and treatment.


2013 ◽  
Vol 144 (4) ◽  
pp. 799-807.e24 ◽  
Author(s):  
Ulrike Peters ◽  
Shuo Jiao ◽  
Fredrick R. Schumacher ◽  
Carolyn M. Hutter ◽  
Aaron K. Aragaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document