scholarly journals The Susceptibility and Potential Functions of the LBX1 Gene in Adolescent Idiopathic Scoliosis

2021 ◽  
Vol 11 ◽  
Author(s):  
Ming Luo ◽  
Yuxiao Zhang ◽  
Shishu Huang ◽  
Yueming Song

Genome-wide association studies have identified many susceptibility genes for adolescent idiopathic scoliosis (AIS). However, most of the results are hard to be replicated in multi-ethnic populations. LBX1 is the most promising candidate gene in the etiology of AIS. We aimed to appraise the literature for the association of LBX1 gene polymorphisms with susceptibility and curve progression in AIS. We also reviewed the function of the LBX1 gene in muscle progenitor cell migration and neuronal determination processes. Three susceptibility loci (rs11190870, rs625039, and rs11598564) near the LBX1 gene, as well as another susceptibility locus (rs678741), related to LBX1 regulation, have been successfully verified to have robust associations with AIS in multi-ethnic populations. The LBX1 gene plays an essential role in regulating the migration and proliferation of muscle precursor cells, and it is known to play a role in neuronal determination processes, especially for the fate of somatosensory relay neurons. The LBX1 gene is the most promising candidate gene in AIS susceptibility due to its position and possible functions in muscle progenitor cell migration and neuronal determination processes. The causality between susceptibility loci related to the LBX1 gene and the pathogenesis of AIS deserves to be explored with further integrated genome-wide and epigenome-wide association studies.

2020 ◽  
Author(s):  
Nadja Makki ◽  
Jingjing Zhao ◽  
Zhaoyang Liu ◽  
Walter L. Eckalbar ◽  
Aki Ushiki ◽  
...  

AbstractAdolescent idiopathic scoliosis (AIS), a sideways curvature of the spine, is the most common pediatric musculoskeletal disorder, affecting ∼3% of the population worldwide. However, its genetic bases and tissues of origin remain largely unknown. Several genome-wide association studies (GWAS) have implicated nucleotide variants in noncoding sequences that control genes with important roles in cartilage, muscle, bone, connective tissue and intervertebral discs (IVDs) as drivers of AIS susceptibility. Here, we set out to define the expression of AIS-associated genes and active regulatory elements by performing RNA-seq and ChIP-seq against H3K27ac in these tissues in mouse and human. Our study highlights genetic pathways involving AIS-associated loci that regulate chondrogenesis, IVD development and connective tissue maintenance and homeostasis. In addition, we identify thousands of putative AIS-associated regulatory elements which may orchestrate tissue-specific expression in musculoskeletal tissues of the spine. Quantification of enhancer activity of several candidate regulatory elements from our study identifies three functional enhancers carrying AIS-associated GWAS SNPs at the ADGRG6 and BNC2 loci. Our findings provide a novel genome-wide catalog of AIS-relevant genes and regulatory elements and aid in the identification of novel targets for AIS causality and treatment.


2018 ◽  
Vol 27 (22) ◽  
pp. 3986-3998 ◽  
Author(s):  
Anas M Khanshour ◽  
Ikuyo Kou ◽  
Yanhui Fan ◽  
Elisabet Einarsdottir ◽  
Nadja Makki ◽  
...  

2020 ◽  
Author(s):  
Nadja Makki ◽  
Jingjing Zhao ◽  
Zhaoyang Liu ◽  
Walter L Eckalbar ◽  
Aki Ushiki ◽  
...  

Abstract Adolescent idiopathic scoliosis (AIS), a sideways curvature of the spine, is the most common pediatric musculoskeletal disorder, affecting ~ 3% of the population worldwide. However, its genetic bases and tissues of origin remain largely unknown. Several genome-wide association studies (GWAS) have implicated nucleotide variants in noncoding sequences that control genes with important roles in cartilage, muscle, bone, connective tissue and intervertebral discs (IVDs) as drivers of AIS susceptibility. Here, we set out to define the expression of AIS-associated genes and active regulatory elements by performing RNA-seq and ChIP-seq against H3K27ac in these tissues in mouse and human. Our study highlights genetic pathways involving AIS-associated loci that regulate chondrogenesis, IVD development and connective tissue maintenance and homeostasis. In addition, we identify thousands of putative AIS-associated regulatory elements which may orchestrate tissue-specific expression in musculoskeletal tissues of the spine. Quantification of enhancer activity of several candidate regulatory elements from our study identifies three functional enhancers carrying AIS-associated GWAS SNPs at the ADGRG6 and BNC2 loci. Our findings provide a novel genome-wide catalog of AIS-relevant genes and regulatory elements and aid in the identification of novel targets for AIS causality and treatment.


2011 ◽  
Vol 20 (7) ◽  
pp. 1456-1466 ◽  
Author(s):  
Swarkar Sharma ◽  
Xiaochong Gao ◽  
Douglas Londono ◽  
Shonn E. Devroy ◽  
Kristen N. Mauldin ◽  
...  

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Oguri ◽  
K Kato ◽  
H Horibe ◽  
T Fujimaki ◽  
J Sakuma ◽  
...  

Abstract Background The circulating concentrations of triglycerides, high density lipoprotein (HDL)-cholesterol, and low density lipoprotein (LDL)-cholesterol have a substantial genetic component. Although previous genome-wide association studies identified various genes and loci related to plasma lipid levels, those studies were conducted in a cross-sectional manner. Purpose The purpose of the study was to identify genetic variants that confer susceptibility to hypertriglyceridemia, hypo-HDL-cholesterolemia, and hyper-LDL-cholesterolemia in Japanese. We have now performed longitudinal exome-wide association studies (EWASs) to identify novel loci for dyslipidemia by examining temporal changes in serum lipid profiles. Methods Longitudinal EWASs (mean follow-up period, 5 years) for hypertriglyceridemia (2056 case, 3966 controls), hypo-HDL-cholesterolemia (698 cases, 5324 controls), and hyper-LDL-cholesterolemia (2769 cases, 3251 controls) were performed with Illumina Human Exome arrays. The relation of genotypes of 24,691 single nucleotide polymorphisms (SNPs) that passed quality control to dyslipidemia-related traits was examined with the generalized estimating equation (GEE). To compensate for multiple comparisons of genotypes with each of the three conditions, we applied Bonferroni's correction for statistical significance of association. Replication studies with cross-sectional data were performed for hypertriglyceridemia (2685 cases, 4703 controls), hypo-HDL-cholesterolemia (1947 cases, 6146 controls), and hyper-LDL-cholesterolemia (1719 cases, 5833 controls). Results Longitudinal EWASs revealed that 30 SNPs were significantly (P<2.03 × 10–6 by GEE) associated with hypertriglyceridemia, 46 SNPs with hypo-HDL-cholesterolemia, and 25 SNPs with hyper-LDL-cholesterolemia. After examination of the relation of identified SNPs to serum lipid profiles, linkage disequilibrium, and results of the previous genome-wide association studies, we newly identified rs74416240 of TCHP, rs925368 of GIT2, rs7969300 of ATXN2, and rs12231744 of NAA25 as a susceptibility loci for hypo-HDL-cholesterolemia; and rs34902660 of SLC17A3 and rs1042127 of CDSN for hyper-LDL-cholesterolemia. These SNPs were not in linkage disequilibrium with those previously reported to be associated with dyslipidemia, indicating independent effects of the SNPs identified in the present study on serum concentrations of HDL-cholesterol or LDL-cholesterol in Japanese. According to allele frequency data from the 1000 Genomes project database, five of the six identified SNPs were monomorphic or rare variants in European populations. In the replication study, all six SNPs were associated with dyslipidemia-related phenotypes. Conclusion We have thus identified six novel loci that confer susceptibility to hypo-HDL-cholesterolemia or hyper-LDL-cholesterolemia. Determination of genotypes for these SNPs at these loci may prove informative for assessment of the genetic risk for dyslipidemia in Japanese. Funding Acknowledgement Type of funding source: None


Sign in / Sign up

Export Citation Format

Share Document