Cdk5 increases MARK4 activity and augments pathological tau accumulation and toxicity through tau phosphorylation at Ser262

2019 ◽  
Vol 28 (18) ◽  
pp. 3062-3071 ◽  
Author(s):  
Taro Saito ◽  
Toshiya Oba ◽  
Sawako Shimizu ◽  
Akiko Asada ◽  
Koichi M Iijima ◽  
...  

Abstract Hyperphosphorylation of the microtubule-associated protein tau is associated with many neurodegenerative diseases, including Alzheimer’s disease. Microtubule affinity-regulating kinases (MARK) 1–4 and cyclin-dependent kinase 5 (Cdk5) are tau kinases under physiological and pathological conditions. However, their functional relationship remains elusive. Here, we report a novel mechanism by which Cdk5 activates MARK4 and augments tau phosphorylation, accumulation and toxicity. MARK4 is highly phosphorylated at multiple sites in the brain and in cultured neurons, and inhibition of Cdk5 activity reduces phosphorylation levels of MARK4. MARK4 is known to be activated by phosphorylation at its activation loop by liver kinase B1 (LKB1). In contrast, Cdk5 increased phosphorylation of MARK4 in the spacer domain, but not in the activation loop, and enhanced its kinase activity, suggesting a novel mechanism by which Cdk5 regulates MARK4 activity. We also demonstrated that co-expression of Cdk5 and MARK4 in mammalian cultured cells significantly increased the levels of tau phosphorylation at both Cdk5 target sites (SP/TP sites) and MARK target sites (Ser262), as well as the levels of total tau. Furthermore, using a Drosophila model of tau toxicity, we demonstrated that Cdk5 promoted tau accumulation and tau-induced neurodegeneration via increasing tau phosphorylation levels at Ser262 by a fly ortholog of MARK, Par-1. This study suggests a novel mechanism by which Cdk5 and MARK4 synergistically increase tau phosphorylation and accumulation, consequently promoting neurodegeneration in disease pathogenesis.

2021 ◽  
Vol 36 ◽  
pp. 153331752110128
Author(s):  
Hana Na ◽  
Hua Tian ◽  
Zhengrong Zhang ◽  
Qiang Li ◽  
Jack B. Yang ◽  
...  

Intraperitoneal injection of amylin or its analog reduces Alzheimer’s disease (AD) pathology in the brains. However, self-injecting amylin analogs is difficult for patients due to cognitive deficits. This work aims to study the effects of amylin on the brain could be achieved by oral delivery as some study reported that amylin receptor may be present in the gastrointestinal tract. A 6-week course of oral amylin treatment reduced components of AD pathology, including the levels of amyloid-β, phosphorylated tau, and ionized calcium binding adaptor molecule 1. The treatment reduced active forms of cyclin-dependent kinase 5. Oral amylin treatment led to improvements in social deficit in AD mouse. Using immunofluorescence, we observed the amylin receptor complexed with the calcitonin receptor and receptor activity-modifying proteins in the enteric neurons. The study suggests the potential of the oral delivery of amylin analogs for the treatment of AD and other neurodegenerative diseases through enteric neurons.


2003 ◽  
Vol 278 (12) ◽  
pp. 10506-10515 ◽  
Author(s):  
Satoru Takahashi ◽  
Taro Saito ◽  
Shin-ichi Hisanaga ◽  
Harish C. Pant ◽  
Ashok B. Kulkarni

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Alexey M Petrov ◽  
Natalia Mast ◽  
Young Li ◽  
John Denker ◽  
Irina A Pikuleva

Abstract Cytochrome P450 46A1 encoded by CYP46A1 catalyzes cholesterol 24-hydroxylation and is a CNS-specific enzyme that controls cholesterol removal and turnover in the brain. Accumulating data suggest that increases in cytochrome P450 46A1 activity in mouse models of common neurodegenerative diseases affect various, apparently unlinked biological processes and pathways. Yet, the underlying reason for these multiple enzyme activity effects is currently unknown. Herein, we tested the hypothesis that cytochrome P450 46A1-mediated sterol flux alters physico-chemical properties of the plasma membranes and thereby membrane-dependent events. We used 9-month-old 5XFAD mice (an Alzheimer’s disease model) treated for 6 months with the anti-HIV drug efavirenz. These animals have previously been shown to have improved behavioural performance, increased cytochrome P450 46A1 activity in the brain, and increased sterol flux through the plasma membranes. We further examined 9-month-old Cyp46a1−/− mice, which have previously been observed to have cognitive deficits and decreased sterol flux through brain membranes. Synaptosomal fractions from the brain of efavirenz-treated 5XFAD mice had essentially unchanged cholesterol levels as compared to control 5XFAD mice. However with efavirenz treatment in these mice, there were changes in the membrane properties (increased cholesterol accessibility, ordering, osmotic resistance and thickness) as well as total glutamate content and ability to release glutamate in response to mild stimulation. Similarly, the cholesterol content in synaptosomal fractions from the brain of Cyp46a1−/− mice was essentially the same as in wild-type mice but knockout of Cyp46a1 was associated with changes in membrane properties and glutamate content and its exocytotic release. Changes in Cyp46a1−/− mice were in the opposite direction to those observed in efavirenz-treated versus control 5XFAD mice. Incubation of synaptosomal fractions with the inhibitors of glycogen synthase kinase 3, cyclin-dependent kinase 5, protein phosphatase 1/2 A, and protein phosphatase 2B revealed that increased sterol flux in efavirenz-treated versus control 5XFAD mice affected the ability of all four enzymes to modulate glutamate release. In contrast, in Cyp46a1−/− versus wild-type mice, decreased sterol flux altered the ability of only cyclin-dependent kinase 5 and protein phosphatase 2B to regulate the glutamate release. Collectively, our results support cytochrome P450 46A1-mediated sterol flux as an important contributor to the fundamental properties of the membranes, protein phosphorylation and synaptic transmission. Also, our data provide an explanation of how one enzyme, cytochrome P450 46A1, can affect multiple pathways and processes and serve as a common potential target for several neurodegenerative disorders.


Sign in / Sign up

Export Citation Format

Share Document