scholarly journals Fallopian tube epithelial cells express androgen receptor and have a distinct hormonal responsiveness when compared with endometrial epithelium

2020 ◽  
Vol 35 (9) ◽  
pp. 2097-2106 ◽  
Author(s):  
A Maclean ◽  
E Bunni ◽  
S Makrydima ◽  
A Withington ◽  
A M Kamal ◽  
...  

Abstract STUDY QUESTION How does steroid receptor expression, proliferative activity and hormone responsiveness of the fallopian tube (FT) epithelium compare to that of the endometrial epithelium? SUMMARY ANSWER Proliferative indices, hormone receptor expression-scores and in vitro response to oestrogen and androgens of the human FT demonstrate a distinct pattern from the matched endometrium. WHAT IS KNOWN ALREADY The FT epithelium exists as a continuum of the endometrium, and both express steroid hormone receptors. The ovarian steroid hormones regulate cyclical proliferation and regeneration of the endometrium, but their effects on steroid hormone receptor expression and proliferation in the FT have not yet been fully elucidated. STUDY DESIGN, SIZE, DURATION We included women with proven fertility, undergoing hysterectomy and bilateral salpingo-oophorectomy for benign, gynaecological conditions at Liverpool Women’s NHS Foundation Trust. They had no known endometrial or tubal pathology and were not on hormonal treatments for at least 3 months preceding sample collection in this prospective observational study (conducted between 2010 and 2018). A full-thickness sample of the endometrium and a sample from the FT were collected from each woman. PARTICIPANTS/MATERIALS, SETTING, METHODS The differential protein and mRNA levels of steroid hormone receptors, oestrogen receptors α and β, androgen receptor (AR) and progesterone receptor (PR), and the proliferative marker (Ki67) of the endometrium and the FT tissue samples from 47 healthy women undergoing surgery (37 premenopausal and 10 postmenopausal) were investigated using immunohistochemistry and quantitative real-time PCR. The comparative responsiveness to oestrogen and androgen of the endometrium and the fimbrial end of the FT was analysed using an in vitro short-term explant culture model. The endpoints assessed in the explants were the changes in mRNA and protein levels for AR, PR and the epithelial proliferative index after 24 h treatment with oestradiol (E2) or dihydrotestosterone (DHT). MAIN RESULTS AND THE ROLE OF CHANCE The premenopausal endometrial functionalis glands (FG) displayed the well-known cyclic variation in cellular proliferation and steroid receptor scores. Compared with the endometrial FG, the matched FT epithelium (both fimbrial or isthmic ends) displayed a significantly lower proportion of cells expressing Ki67 (2.8% ± 2.2%, n = 18 vs 30.0% ± 26.3%, n = 16, P = 0.0018, respectively) accompanied with a significantly higher AR immunoscores (6.7 ± 2.7, n = 16 vs 0.3 ± 1.0, n = 10, P = 0.0136). The proportion of cells expressing Ki67 and the AR immunoscores of the FT epithelium correlated positively with endometrial luminal epithelium (r = 0.62, P = 0.005, and r = 0.68, P = 0.003, respectively). In vitro experiments suggested the tubal explants to be apparently less responsive to E2 yet more sensitive to DHT compared with the matched endometrium explants. LIMITATIONS, REASONS FOR CAUTION The short-term in vitro nature of the tissue explant cultures used in the study may not be representative of how different anatomical regions of the endometrium and FT behave in vivo. Our study included a high proportion of older premenopausal women with a regular menstrual cycle, which may therefore affect extrapolation of findings to a younger group. WIDER IMPLICATIONS OF THE FINDINGS Advancing our understanding of tubal and endometrial epithelial cell function has important implications for the diagnosis and treatment of diseases such as infertility, ectopic pregnancy, endometriosis and cancer. STUDY FUNDING/COMPETING INTEREST(S) The work included in this article was funded by Wellbeing of Women project grants RG1073 and RG2137 (D.K.H.) and Wellbeing of Women Entry-Level Scholarship ELS706 (A.M). A.M. was also supported by an NIHR ACF fellowship grant. Further support received from Liverpool Women’s Hospital NHS Trust (S.M.), University of Liverpool (E.B. and A.W.). All authors declare there are no conflicts of interest. TRIAL REGISTRATION NUMBER N/A

1998 ◽  
Vol 10 (1) ◽  
pp. 105 ◽  
Author(s):  
W. R. Kelce ◽  
L. E. Gray ◽  
E. M. Wilson

Steroid hormone receptors control fundamental events in embryonic development and sex differentiation through their function as ligand-inducible transcription factors. The consequences of disrupting these processes can be especially profound during development due to the crucial role hormones play in controlling transient and irreversible developmental processes. Several environmental chemicals, including metabolites of the fungicide vinclozolin and the pesticide DDT, disrupt male reproductive development and function by inhibiting androgen receptor mediated events. A variety of in vitro and in vivo approaches have been used to determine the molecular basis of environmental antiandrogen toxicity. These chemicals commonly bind androgen receptor with moderate affinity and act as antagonists by inhibiting transcription of androgen dependent genes.


Endocrinology ◽  
2020 ◽  
Vol 161 (9) ◽  
Author(s):  
Victoria M McLeod ◽  
Mathew D F Chiam ◽  
Chew L Lau ◽  
Thusitha W Rupasinghe ◽  
Wah C Boon ◽  
...  

Abstract Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease targeting motor neurons which shows sexual dimorphism in its incidence, age of onset, and progression rate. All steroid hormones, including androgens, estrogens, and progestogens, have been implicated in modulating ALS. Increasing evidence suggests that steroid hormones provide neuroprotective and neurotrophic support to motor neurons, either directly or via surrounding glial cell interactions, by activating their respective nuclear hormone receptors and initiating transcriptional regulatory responses. The SOD1G93A transgenic mouse also shows sex-specific differences in age of onset and progression, and remains the most widely used model in ALS research. To provide a more comprehensive understanding of the influences of steroid hormone signaling in ALS, we systemically characterized sex hormone receptor expression at transcript and protein levels, cellular localization, and the impact of disease course in lumbar spinal cords of male and female SOD1G93A mice. We found that spinal motor neurons highly express nuclear androgen receptor (AR), estrogen receptor (ER)α, ERβ, and progesterone receptor with variations in glial cell expression. AR showed the most robust sex-specific difference in expression and was downregulated in male SOD1G93A mouse spinal cord, in association with depletion in 5α-reductase type 2 isoform, which primarily metabolizes testosterone to 5α-dihydrotestosterone. ERα was highly enriched in reactive astrocytes of SOD1G93A mice and ERβ was strongly upregulated. The 5α-reductase type 1 isoform was upregulated with disease progression and may influence local spinal cord hormone levels. In conclusion, steroid hormone receptor expression is dynamic and cell-type specific in SOD1G93A mice which may provide targets to modulate progression in ALS.


2021 ◽  
Vol 92 (1) ◽  
Author(s):  
Thanya Bunma ◽  
Chutikun Kanjanaruch ◽  
Nattawut Kogram ◽  
Suthipong Uriyapongson ◽  
Vilaivan Khanthusaeng ◽  
...  

2001 ◽  
Vol 361 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Guy VERRIJDT ◽  
Annemie HAELENS ◽  
Erik SCHOENMAKERS ◽  
Wilfried ROMBAUTS ◽  
Frank CLAESSENS

We performed a comparative analysis of the effect of high-mobility group box protein 1 (HMGB1) on DNA binding by the DNA-binding domains (DBDs) of the androgen, glucocorticoid, progesterone and mineralocorticoid receptors. The affinity of the DBDs of the different receptors for the tyrosine aminotransferase glucocorticoid response element, a classical high-affinity binding element, was augmented up to 7-fold by HMGB1. We found no major differences in the effects of HMGB1 on DNA binding between the different steroid hormone receptors. In transient transfection assays, however, HMGB1 significantly enhances the activity of the glucocorticoid and progesterone receptors but not the androgen or mineralocorticoid receptor. We also investigated the effect of HMGB1 on the binding of the androgen receptor DBD to a subclass of directly repeated response elements that is recognized exclusively by the androgen receptor and not by the glucocorticoid, progesterone or mineralocorticoid receptor. Surprisingly, a deletion of 26 amino acid residues from the C-terminal extension of the androgen receptor DBD does not influence DNA binding but destroys its sensitivity to HMGB1. Deletion of the corresponding fragment in the DBDs of the glucocorticoid, progesterone and mineralocorticoid receptor destroyed their DNA binding. This 26-residue fragment is therefore essential for the influence of HMGB1 on DNA recognition by all steroid hormone receptors that were tested. However, it is dispensable for DNA binding by the androgen receptor.


2005 ◽  
Vol 34 (2) ◽  
pp. 517-534 ◽  
Author(s):  
S Hombach-Klonisch ◽  
A Kehlen ◽  
P A Fowler ◽  
B Huppertz ◽  
J F Jugert ◽  
...  

Information on the regulation of steroid hormone receptors and their distinct functions within the human endometrial epithelium is largely unavailable. We have immortalized human primary endometrial epithelial cells (EECs) isolated from a normal proliferative phase endometrium by stably transfecting the catalytic subunit (hTERT) of the human telomerase complex and cultured these hTERT-EECs now for over 350 population doublings. Active hTERT was detected in hTERT-EECs employing the telomerase repeat amplification assay protocol. hTERT-EECs revealed a polarized, non-invasive epithelial phenotype with apical microvilli and production of a basal lamina when grown on a three-dimensional collagen–fibroblast lattice. Employing atomic force microscopy, living hTERT-EECs were shown to produce extracellular matrix (ECM) components and ECM secretion was modified by estrogen and progesterone (P4). hTERT-EECs expressed inducible and functional endogenous estrogen receptor-alpha (ER-alpha) as demonstrated by estrogen response element reporter assays and induction of P4 receptor (PR). P4 treatment down-regulated PR expression, induced MUC-1 gene activity and resulted in increased ER-beta transcriptional activity. Gene activities of cytokines and their receptors interleukin (IL)-6, leukemia inhibitory factor (LIF), IL-11 and IL-6 receptor (IL6-R), LIF receptor and gp130 relevant to implantation revealed a 17 beta-estradiol (E2)-mediated up-regulation of IL-6 and an E2- and P4-mediated up-regulation of IL6-R in hTERT-EECs. Thus, hTERT-EECs may be regarded as a novel in vitro model to investigate the role of human EECs in steroid hormone-dependent normal physiology and pathologies, including implantation failure, endometriosis and endometrial cancer.


Sign in / Sign up

Export Citation Format

Share Document