scholarly journals Regulation of functional steroid receptors and ligand-induced responses in telomerase-immortalized human endometrial epithelial cells

2005 ◽  
Vol 34 (2) ◽  
pp. 517-534 ◽  
Author(s):  
S Hombach-Klonisch ◽  
A Kehlen ◽  
P A Fowler ◽  
B Huppertz ◽  
J F Jugert ◽  
...  

Information on the regulation of steroid hormone receptors and their distinct functions within the human endometrial epithelium is largely unavailable. We have immortalized human primary endometrial epithelial cells (EECs) isolated from a normal proliferative phase endometrium by stably transfecting the catalytic subunit (hTERT) of the human telomerase complex and cultured these hTERT-EECs now for over 350 population doublings. Active hTERT was detected in hTERT-EECs employing the telomerase repeat amplification assay protocol. hTERT-EECs revealed a polarized, non-invasive epithelial phenotype with apical microvilli and production of a basal lamina when grown on a three-dimensional collagen–fibroblast lattice. Employing atomic force microscopy, living hTERT-EECs were shown to produce extracellular matrix (ECM) components and ECM secretion was modified by estrogen and progesterone (P4). hTERT-EECs expressed inducible and functional endogenous estrogen receptor-alpha (ER-alpha) as demonstrated by estrogen response element reporter assays and induction of P4 receptor (PR). P4 treatment down-regulated PR expression, induced MUC-1 gene activity and resulted in increased ER-beta transcriptional activity. Gene activities of cytokines and their receptors interleukin (IL)-6, leukemia inhibitory factor (LIF), IL-11 and IL-6 receptor (IL6-R), LIF receptor and gp130 relevant to implantation revealed a 17 beta-estradiol (E2)-mediated up-regulation of IL-6 and an E2- and P4-mediated up-regulation of IL6-R in hTERT-EECs. Thus, hTERT-EECs may be regarded as a novel in vitro model to investigate the role of human EECs in steroid hormone-dependent normal physiology and pathologies, including implantation failure, endometriosis and endometrial cancer.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryo Yokomizo ◽  
Yukiko Fujiki ◽  
Harue Kishigami ◽  
Hiroshi Kishi ◽  
Tohru Kiyono ◽  
...  

Abstract Background Thin endometrium adversely affects reproductive success rates with fertility treatment. Autologous transplantation of exogenously prepared endometrium can be a promising therapeutic option for thin endometrium; however, endometrial epithelial cells have limited expansion potential, which needs to be overcome in order to make regenerative medicine a therapeutic strategy for refractory thin endometrium. Here, we aimed to perform long-term culture of endometrial epithelial cells in vitro. Methods We prepared primary human endometrial epithelial cells and endometrial stromal cells and investigated whether endometrial stromal cells and human embryonic stem cell-derived feeder cells could support proliferation of endometrial epithelial cells. We also investigated whether three-dimensional culture can be achieved using thawed endometrial epithelial cells and endometrial stromal cells. Results Co-cultivation with the feeder cells dramatically increased the proliferation rate of the endometrial epithelial cells. We serially passaged the endometrial epithelial cells on mouse embryonic fibroblasts up to passage 6 for 4 months. Among the human-derived feeder cells, endometrial stromal cells exhibited the best feeder activity for proliferation of the endometrial epithelial cells. We continued to propagate the endometrial epithelial cells on endometrial stromal cells up to passage 5 for 81 days. Furthermore, endometrial epithelium and stroma, after the freeze-thaw procedure and sequential culture, were able to establish an endometrial three-dimensional model. Conclusions We herein established a model of in vitro cultured endometrium as a potential therapeutic option for refractory thin endometrium. The three-dimensional culture model with endometrial epithelial and stromal cell orchestration via cytokines, membrane-bound molecules, extracellular matrices, and gap junction will provide a new framework for exploring the mechanisms underlying the phenomenon of implantation. Additionally, modified embryo culture, so-called “in vitro implantation”, will be possible therapeutic approaches in fertility treatment.


2016 ◽  
Vol 14 (1) ◽  
pp. nrs.14001 ◽  
Author(s):  
Yingfeng Zheng ◽  
Leigh C. Murphy

Cell cycle progression is tightly controlled by several kinase families including Cyclin-Dependent Kinases, Polo-Like Kinases, and Aurora Kinases. A large amount of data show that steroid hormone receptors and various components of the cell cycle, including cell cycle regulated kinases, interact, and this often results in altered transcriptional activity of the receptor. Furthermore, steroid hormones, through their receptors, can also regulate the transcriptional expression of genes that are required for cell cycle regulation. However, emerging data suggest that steroid hormone receptors may have roles in cell cycle progression independent of their transcriptional activity. The following is a review of how steroid receptors and their coregulators can regulate or be regulated by the cell cycle machinery, with a particular focus on roles independent of transcription in G2/M.


2002 ◽  
Vol 14 (4) ◽  
pp. 241 ◽  
Author(s):  
Hilde Vermeirsch ◽  
Wim Van Den Broeck ◽  
Mark Coryn ◽  
Paul Simoens

The aim of this immunohistochemical study was to describe the cellular distribution of the estrogen receptor-α (ERα), progesterone receptor (PR) and androgen receptor (AR) in canine uterine tubes. Samples of uterine tubes were taken from dogs in different stages of the estrous cycle, and dogs that were pregnant or had just delivered. Nuclear staining for sex steroid hormone receptors was observed in the surface epithelium, stromal cells and smooth muscle cells of the muscular layer. Only slight differences in staining pattern were observed between the ampulla and fimbriae. The staining for ERα and PR showed changes throughout the estrous cycle. Some of these changes were related to changing concentrations of sex steroid hormones. High staining scores for ERα and PR were found during proestrus and low scores during early metestrus. The staining for AR showed only minor cyclic changes. However, during proestrus and estrus, cytoplasmic staining for AR was observed in differentiated secretory epithelial cells, when nuclear staining in these cells was nearly absent. For the three hormone receptors, stromal cells generally stained with a higher intensity than epithelial cells. It is likely that many steroid hormone actions on the epithelium are mediated through stromal cells. During pregnancy, rather high staining scores were found for ERα and AR in the uterine tube. This is in contrast to observations in the canine pregnant uterus.


1991 ◽  
Vol 11 (6) ◽  
pp. 3247-3258 ◽  
Author(s):  
M Truss ◽  
G Chalepakis ◽  
E P Slater ◽  
S Mader ◽  
M Beato

Steroid hormone receptors can be divided into two subfamilies according to the structure of their DNA binding domains and the nucleotide sequences which they recognize. The glucocorticoid receptor and the progesterone receptor (PR) recognize an imperfect palindrome (glucocorticoid responsive element/progesterone responsive element [GRE/PRE]) with the conserved half-sequence TGTYCY, whereas the estrogen receptor (ER) recognizes a palindrome (estrogen responsive element) with the half-sequence TGACC. A series of symmetric and asymmetric variants of these hormone responsive elements (HREs) have been tested for receptor binding and for the ability to mediate induction in vivo. High-resolution analysis demonstrates that the overall number and distribution of contacts with the N-7 position of guanines and with the phosphate backbone of various HREs are quite similar for PR and ER. However, PR and glucocorticoid receptor, but not ER, are able to contact the 5'-methyl group of thymines found in position 3 of HREs, as shown by potassium permanganate interference. The ER mutant HE84, which contains a single amino acid exchange, Glu-203 to Gly, in the knuckle of ER, creates a promiscuous ER that is able to bind to GRE/PREs by contacting this thymine. Elements with the sequence GGTCAcagTGTYCT that represent hybrids between an estrogen response element and a GRE/PRE respond to estrogens, glucocorticoids, and progestins in vivo and bind all three wild-type receptors in vitro. These hybrid HREs could serve to confer promiscuous gene regulation.


Author(s):  
Mitsuhiro Kawata ◽  
Mayumi Nishi ◽  
Ken-ichi Matsuda ◽  
Hiroshi Ogawa ◽  
Ikuo Ochiai ◽  
...  

2002 ◽  
Vol 20 (13) ◽  
pp. 3001-3015 ◽  
Author(s):  
Edward P. Gelmann

ABSTRACT: Androgen receptor (AR) is a member of the steroid hormone receptor family of molecules. AR primarily is responsible for mediating the physiologic effects of androgens by binding to specific DNA sequences that influence transcription of androgen-responsive genes. The three-dimensional structure of the AR ligand-binding domain has shown it is similar to other steroid hormone receptors and that ligand binding alters the protein conformation to allow binding of coactivator molecules that amplify the hormone signal and mediate transcriptional initiation. However, AR also undergoes intramolecular interactions that regulate its interactions with coactivators and influence its activity. A large number of naturally occurring mutations of the human AR gene have provided important information about AR molecular structure and intermolecular interactions. AR is also a critical mediator of prostate cancer promotion, conferring growth signals to prostate cancer cells throughout the natural history of the disease. Late-stage prostate cancer, unresponsive to hormonal deprivation, sustains AR signaling through a diverse array of molecular strategies. Variations in the AR gene may also confer genetic predisposition to prostate cancer development and severity. Further understanding of AR action and new strategies to interfere with AR signaling hold promise for improving prostate cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document