The Microbial Composition of Bacteroidetes Species in Ulcerative Colitis Is Effectively Improved by Combination Therapy With Fecal Microbiota Transplantation and Antibiotics

Author(s):  
Dai Ishikawa ◽  
Takashi Sasaki ◽  
Masahito Takahashi ◽  
Kyoko Kuwahara-Arai ◽  
Keiichi Haga ◽  
...  
2019 ◽  
Vol 47 (2) ◽  
pp. 1072-1079 ◽  
Author(s):  
B. D. Moutinho ◽  
J. P. Baima ◽  
F. F. Rigo ◽  
R. Saad-Hossne ◽  
J. Rodrigues ◽  
...  

Studies comparing gut microbiota profiles of inflammatory bowel disease (IBD) patients have shown several changes in microbiota composition, with marked reduction of local biodiversity relative to that of healthy controls. Modulation of the bacterial community is a promising strategy to reduce the proportion of harmful microorganisms and increase the proportion of beneficial bacteria; this is expected to prevent or treat IBD. The exact mechanism of fecal microbiota transplantation (FMT) remains unknown; however, replacing the host microbiota can reestablish gut microbial composition and function in IBD patients. The present report describes an ulcerative colitis patient who underwent FMT. A 17-year-old male with moderate to severe clinical activity, which was refractory to mesalazine, azathioprine, and infliximab, underwent FMT as alternative therapy. The patient exhibited clinical improvement after the procedure; however, the symptoms returned. A second FMT was performed 8 months after the first procedure, but the patient did not improve. In conclusion, despite the FMT failure observed in this patient, the procedure is a promising therapeutic option for IBD patients, and more in-depth studies of this method are needed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lena Öhman ◽  
Anders Lasson ◽  
Anna Strömbeck ◽  
Stefan Isaksson ◽  
Marcus Hesselmar ◽  
...  

AbstractPatients with ulcerative colitis (UC) have an altered gut microbiota composition, but the microbial relationship to disease activity needs to be further elucidated. Therefore, temporal dynamics of the fecal microbial community during remission and flare was determined. Fecal samples were collected at 2–6 time-points from UC patients during established disease (cohort EST) and at diagnosis (cohort NEW). Sampling range for cohort EST was 3–10 months and for cohort NEW 36 months. Relapses were monitored for an additional three years for cohort EST. Microbial composition was assessed by Genetic Analysis GA-map Dysbiosis Test, targeting ≥ 300 bacteria. Eighteen patients in cohort EST (8 with maintained remission and 10 experiencing a flare), provided 71 fecal samples. In cohort NEW, 13 patients provided 49 fecal samples. The microbial composition showed no clustering related to disease activity in any cohort. Microbial dissimilarity was higher between than within patients for both cohorts, irrespective of presence of a flare. Microbial stability within patients was constant over time with no major shift in overall composition nor modification in the abundance of any specific species. Microbial composition was not affected by intensified medical treatment or linked to future disease course. Thus in UC, the gut microbiota is highly stable irrespective of disease stage, disease activity or treatment escalation. This suggests that prolonged dietary interventions or repeated fecal transplantations are needed to be able to induce permanent alterations of the gut microbiota.


2020 ◽  
Vol 8 (10) ◽  
pp. 1486
Author(s):  
Andrea Quagliariello ◽  
Federica Del Chierico ◽  
Sofia Reddel ◽  
Alessandra Russo ◽  
Andrea Onetti Muda ◽  
...  

Fecal microbiota transplantation (FMT) is a promising strategy in the management of inflammatory bowel disease (IBD). The clinical effects of this practice are still largely unknown and unpredictable. In this study, two children affected by mild and moderate ulcerative colitis (UC), were pre- and post-FMT monitored for clinical conditions and gut bacterial ecology. Microbiota profiling relied on receipts’ time-point profiles, donors and control cohorts’ baseline descriptions. After FMT, the improvement of clinical conditions was recorded for both patients. After 12 months, the mild UC patient was in clinical remission, while the moderate UC patient, after 12 weeks, had a clinical worsening. Ecological analyses highlighted an increase in microbiota richness and phylogenetic distance after FMT. This increase was mainly due to Collinsella aerofaciens and Eubacterium biforme, inherited by respective donors. Moreover, a decrease of Proteus and Blautia producta, and the increment of Parabacteroides, Mogibacteriaceae, Bacteroides eggerthi, Bacteroides plebeius, Ruminococcus bromii, and BBacteroidesovatus were associated with remission of the patient’s condition. FMT results in a long-term response in mild UC, while in the moderate form there is probably need for multiple FMT administrations. FMT leads to a decrease in potential pathogens and an increase in microorganisms correlated to remission status.


Sign in / Sign up

Export Citation Format

Share Document