scholarly journals The relationship between egg size and fertilization success in broadcast-spawning marine invertebrates

2006 ◽  
Vol 46 (3) ◽  
pp. 298-311 ◽  
Author(s):  
D. R. Levitan
2019 ◽  
Vol 70 (7) ◽  
pp. 995 ◽  
Author(s):  
Dione J. Deaker ◽  
Shawna A. Foo ◽  
Maria Byrne

Fertilisation and development in broadcast-spawning marine invertebrates depends on the ability of the egg to attract spermatozoa and provision progeny. Echinoderm eggs have a jelly coat that facilitates sperm–egg collisions. We investigated variation in egg volume and target area for spermatozoa provided by the jelly coat within and between three sea urchin species (Heliocidaris erythrogramma, Heliocidaris tuberculata, Centrostephanus rodgersii), as well as across 22 echinoderm species for which data are available. Egg and jelly-coat size varied within spawns of individual females, between females of a species and between species. The jelly coat increased egg target area by 125–489% for echinoids with planktotrophic development. In general, planktotrophic echinoids (n=16) with larger eggs had thicker jelly coats, as did H. tuberculata females with larger eggs. Variability in egg and jelly-coat size within a species indicates that these traits are prone to maternal effects and may be influenced by factors such as sperm environment and offspring fitness that drive selection on egg investment. The greater variability in jelly-coat size compared with that of the egg has a large potential to affect fertilisation and should be considered in models of fertilisation kinetics. Egg size alone cannot be used as a metric to infer target size for spermatozoa.


2001 ◽  
Vol 138 (6) ◽  
pp. 1153-1161 ◽  
Author(s):  
Not Available Not Available ◽  
Not Available Not Available ◽  
Not Available Not Available

Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Sign in / Sign up

Export Citation Format

Share Document