Seasonal distribution and growth of larval herring (Clupea harengus L.) in the Georges Bank-Gulf of Maine area from 1962 to 1970

1973 ◽  
Vol 35 (1) ◽  
pp. 36-51 ◽  
Author(s):  
H. C. Boyar ◽  
R. R. Marak ◽  
F. E. Perkins ◽  
R. A. Clifford
1960 ◽  
Vol 17 (6) ◽  
pp. 933-942 ◽  
Author(s):  
S. N. Tibbo ◽  
J. E. Henri Legaré

Plankton surveys in the Bay of Fundy and Gulf of Maine in 1958 and 1959 indicated that the largest herring spawning areas in this region are on the northern edge of Georges Bank and off the southwest coast of Nova Scotia. The drift of larvae from the spawning grounds as indicated by increasing size and by the direction of non-tidal surface currents suggest that Bay of Fundy herring stocks are supplied chiefly from the Nova Scotia spawnings.


1958 ◽  
Vol 15 (6) ◽  
pp. 1451-1469 ◽  
Author(s):  
S. N. Tibbo ◽  
J. E. Henri Legaré ◽  
Leslie W. Scattergood ◽  
R. F. Temple

A major portion of the Bay of Fundy and Gulf of Maine has been surveyed for occurrence and distribution of herring larvae. Plankton samples obtained with Hardy continuous plankton recorders and plankton nets confirm major spawning areas off the southwest coast of Nova Scotia and on the northern edge of Georges Bank. Newly hatched larvae were found in abundance in these areas, but nowhere else. Drift of larvae as indicated by non-tidal surface currents suggests that Nova Scotia spawnings may contribute substantially to commercial stocks of herring in inshore areas of Maine and New Brunswick. It is possible that Georges Bank spawnings also supply herring to this region.


2006 ◽  
Vol 64 (1) ◽  
pp. 83-96 ◽  
Author(s):  
W. J. Overholtz ◽  
J. S. Link

Abstract Overholtz, W. J. and Link, J. S. 2007. Consumption impacts by marine mammals, fish, and seabirds on the Gulf of Maine–Georges Bank Atlantic herring (Clupea harengus) complex during the years 1977–2002. ICES Journal of Marine Science, 64: 83–96. A comprehensive study of the impact of predation during the years 1977–2002 on the Gulf of Maine–Georges Bank herring complex is presented. An uncertainty approach was used to model input variables such as predator stock size, daily ration, and diet composition. Statistical distributions were constructed on the basis of available data, producing informative and uninformative inputs for estimating herring consumption within an uncertainty framework. Consumption of herring by predators tracked herring abundance closely during the study period, as this important prey species recovered following an almost complete collapse during the late 1960s and 1970s. Annual consumption of Atlantic herring by four groups of predators, demersal fish, marine mammals, large pelagic fish, and seabirds, averaged just 58 000 t in the late 1970s, increased to 123 000 t between 1986 and 1989, 290 000 t between 1990 and 1994, and 310 000 t during the years 1998–2002. Demersal fish consumed the largest proportion of this total, followed by marine mammals, large pelagic fish, and seabirds. Sensitivity analyses suggest that future emphasis should be placed on collecting time-series of diet composition data for marine mammals, large pelagic fish, and seabirds, with additional monitoring focused on the abundance of seabirds and daily rations of all groups.


2018 ◽  
Vol 76 (5) ◽  
pp. 163-215 ◽  
Author(s):  
Elizabeth J. Wallace ◽  
Lev B. Looney ◽  
Donglai Gong

Increasing attention is being placed on the regional impact of climate change. This study focuses on the decadal scale variabilities of temperature and salinity in the Mid-Atlantic Bight (MAB), Georges Bank (GB), and Gulf of Maine (GOM) from 1977 to 2016 using hydrographic survey data from the National Oceanic and Atmospheric Administration (NOAA) Northeast Fisheries Science Center. The MAB (as defined by the shelf regions from Cape Hatteras to Cape Cod) experienced warming rates of 0.57 °C per decade during the Winter/Spring season (Jan–Apr) and 0.47 °C per decade during the Fall/Winter season (Sep–Dec). The GOM and GB, on the other hand, warmed at approximately half the rate of the MAB over the same time span (1977–2016). We found that rates of warming vary on decadal time scales. From 1977 to 1999, significant temperature increases (> 0.6 °C/decade) were found in the southern regions of the MAB during the Winter/Spring season. During the same period, significant freshening (stronger than– 0.2/decade) was found in GB and the northern regions of the MAB during the Winter/Spring and Summer seasons. From 1999 to 2016, on the other hand, we found no significant trends in temperature and few significant trends in salinity with the exceptions of some northern MAB regions showing significant salting. Interannual variability in shelf salinity can in part be attributed to river discharge variability in the Hudson River and Chesapeake Bay. However, decadal scale change in shelf salinity cannot be attributed to changes in river discharge as there were no significant decadal scale changes in river outflow. Variability in along-shelf freshwater transport and saline intrusions from offshore were the likely drivers of long-term changes in MAB shelf-salinity.


Sign in / Sign up

Export Citation Format

Share Document