scholarly journals Consumption impacts by marine mammals, fish, and seabirds on the Gulf of Maine–Georges Bank Atlantic herring (Clupea harengus) complex during the years 1977–2002

2006 ◽  
Vol 64 (1) ◽  
pp. 83-96 ◽  
Author(s):  
W. J. Overholtz ◽  
J. S. Link

Abstract Overholtz, W. J. and Link, J. S. 2007. Consumption impacts by marine mammals, fish, and seabirds on the Gulf of Maine–Georges Bank Atlantic herring (Clupea harengus) complex during the years 1977–2002. ICES Journal of Marine Science, 64: 83–96. A comprehensive study of the impact of predation during the years 1977–2002 on the Gulf of Maine–Georges Bank herring complex is presented. An uncertainty approach was used to model input variables such as predator stock size, daily ration, and diet composition. Statistical distributions were constructed on the basis of available data, producing informative and uninformative inputs for estimating herring consumption within an uncertainty framework. Consumption of herring by predators tracked herring abundance closely during the study period, as this important prey species recovered following an almost complete collapse during the late 1960s and 1970s. Annual consumption of Atlantic herring by four groups of predators, demersal fish, marine mammals, large pelagic fish, and seabirds, averaged just 58 000 t in the late 1970s, increased to 123 000 t between 1986 and 1989, 290 000 t between 1990 and 1994, and 310 000 t during the years 1998–2002. Demersal fish consumed the largest proportion of this total, followed by marine mammals, large pelagic fish, and seabirds. Sensitivity analyses suggest that future emphasis should be placed on collecting time-series of diet composition data for marine mammals, large pelagic fish, and seabirds, with additional monitoring focused on the abundance of seabirds and daily rations of all groups.

2012 ◽  
Vol 70 (1) ◽  
pp. 196-203 ◽  
Author(s):  
Jason D. Stockwell ◽  
Thomas C. Weber ◽  
Adam J. Baukus ◽  
J. Michael Jech

Abstract Stockwell, J. D., Weber, T. C., Baukus, A. J., and Jech, J. M. 2013. On the use of omnidirectional sonars and downwards-looking echosounders to assess pelagic fish distributions during and after midwater trawling. – ICES Journal of Marine Science, 70:196–203. Small pelagic fish can play an important role in the structure and function of ecosystems, and there is increasing interest in their non-market value. At the scale of fish aggregations, however, the impact of fishing has received relatively little attention, with most effort devoted to impacts of vessel and gear avoidance on stock size estimates. We used concurrent deployment of a downwards-looking echosounder (Simrad ES60 system) and an omnidirectional sonar (Simrad SP90 system) during commercial pairtrawling operations for Atlantic herring (Clupea harengus) in the Gulf of Maine to examine their potential for studying the impacts of fishing on herring aggregations. We compared a number of aggregation metrics to illustrate similarities and differences between the two systems, and then qualitatively examined their properties during and after pairtrawling events to illustrate potential applications. Our results suggest that using both downwards-looking and omnidirectional systems provides complementary information on fish aggregation metrics. Future applications of these systems in before–after–control-impact (BACI) designs may help inform management agencies when evaluating potential impacts of fishing at the time and space scales of pelagic fish aggregations.


2004 ◽  
Vol 61 (3) ◽  
pp. 323-337 ◽  
Author(s):  
Redwood W. Nero ◽  
Charles H. Thompson ◽  
J. Michael Jech

Abstract Acoustic measurements at 1.5–5 kHz on fish in the Gulf of Maine showed a swimbladder-resonance peak near 2.5 kHz at 160–190-m depth. Midwater trawls confirmed that the fish were likely to be Atlantic herring (Clupea harengus) of 19–29 cm length. Calculation using a model of swimbladder resonance gives swimbladder volumes of 1.2% of fish weight at 160–190 m. Extrapolation of this volume of gas using Boyle's Law suggests that at the sea surface, these herring would need to inflate their swimbladders by up to five to six times the volume required for neutral buoyancy. If these fish were to maintain this volume of gas with surface “gulping”, they would need to submerge from the sea surface with a 30% excess buoyancy. In general, swimbladders of the Clupeidae may have greater volumes of gas than if the fish were neutrally buoyant at the sea surface and the interpretation of HF-echosounder surveys may be additionally complex when the volume of gas and swimbladder volume are difficult to predict. Mechanisms of how herring obtain additional swimbladder gas are discussed.


2018 ◽  
Vol 75 (8) ◽  
pp. 1215-1229 ◽  
Author(s):  
Lauren C. Scopel ◽  
Antony W. Diamond ◽  
Stephen W. Kress ◽  
Adrian R. Hards ◽  
Paula Shannon

Ecosystem-based fishery management requires understanding of relationships between exploited fish and their predators, such as seabirds. We used exploratory regression analyses to model relationships between Atlantic herring (Clupea harengus) in the diet of seabird chicks at nine nesting colonies in the Gulf of Maine and four types of fishery- and survey-derived herring data. We found several strong relationships, which suggests spatial structuring in herring stocks and likely patterns of herring movements before they recruit into the fishery. Some types of herring data seldom used in stock assessments — notably acoustic surveys, fixed-gear landings, and mass-at-age (i.e., weight-at-age) — correlated as strongly with seabird data as more commonly used series, such as mobile-gear landings and modeled spawning stock biomass. Seabird chick diets collected at specific locations thus offer a promising means to assess the size, distribution, and abundance of juvenile herring across a broad area prior to recruitment, which is a major source of uncertainty in fisheries. Common terns (Sterna hirundo) showed the most potential as a bioindicator, correlating well and showing consistent spatial patterns with 11 of 13 fishery data series.


1960 ◽  
Vol 17 (6) ◽  
pp. 933-942 ◽  
Author(s):  
S. N. Tibbo ◽  
J. E. Henri Legaré

Plankton surveys in the Bay of Fundy and Gulf of Maine in 1958 and 1959 indicated that the largest herring spawning areas in this region are on the northern edge of Georges Bank and off the southwest coast of Nova Scotia. The drift of larvae from the spawning grounds as indicated by increasing size and by the direction of non-tidal surface currents suggest that Bay of Fundy herring stocks are supplied chiefly from the Nova Scotia spawnings.


2012 ◽  
Vol 69 (6) ◽  
pp. 1086-1098 ◽  
Author(s):  
Ryan A. Saunders ◽  
Ciaran O'Donnell ◽  
Rolf J. Korneliussen ◽  
Sascha M. M. Fässler ◽  
Maurice W. Clarke ◽  
...  

Abstract Saunders, R. A., O'Donnell, C., Korneliussen, R. J., Fässler, S. M. M., Clarke, M. W., Egan, A, and Reid, D. 2012. Utility of 18-kHz acoustic data for abundance estimation of Atlantic herring (Clupea harengus) – ICES Journal of Marine Science, 69: 1086–1098. Current acoustic survey protocols for Atlantic herring (Clupea harengus) abundance estimation are principally dependent upon 38-kHz backscatter data. This can constitute a substantial problem for robust stock assessment when 38-kHz data are compromised. Research vessels now typically collect multifrequency data during acoustic surveys, which could be used to remediate such situations. Here, we investigate the utility of using 18- and 120-kHz data for herring abundance estimation when the standard 38-kHz approach is not possible. Estimates of herring abundance/biomass in the Celtic Sea (2007–2010) were calculated at 18, 38, and 120 kHz using the standard 38-kHz target-strength (TS) model and geometrically equivalent TS models at 18 and 120 kHz. These estimates were compared to assess the level of coherence between the three frequencies, and 18-kHz-derived estimates were subsequently input into standard 38-kHz-based population models to evaluate the impact on the assessment. Results showed that estimates of herring abundance/biomass from 18 and 38 kHz acoustic integration varied by only 0.3–5.4%, and acoustically derived numbers-at-age estimates were not significantly (p > 0.05) different from 1:1. Estimates at 120 kHz were also robust. Furthermore, 18-kHz-derived estimates did not significantly change the assessment model output, indicating that 18-kHz data can be used for herring stock assessment purposes.


1985 ◽  
Vol 42 (S1) ◽  
pp. s158-s173 ◽  
Author(s):  
V. C. Anthony ◽  
M. J. Fogarty

Atlantic herring (Clupea harengus harengus) recruitment in the Gulf of Maine since 1947 has varied by a ratio of 20 to 1. Since heavy fishing began in the mid-1960's, recruitment has fluctuated by only a factor of 9 to 1. The greatest fluctuations in recruitment, therefore, historically occurred in the absence of high fishing mortality. Recruitment predictions and understanding of the causes of fluctuations are extremely important, since strong year classes traditionally have sustained the herring fisheries in the Gulf of Maine. The effect of environmental variables (particularly temperature) on herring recruitment and growth were examined in detail. Vulnerability of Gulf of Maine herring in response to moon phase is also considered. Indices of abundance of Atlantic herring in the Gulf of Maine were calculated for three time periods using three different procedures. Indices of abundance for the periods of 1915–67 and 1951–81 indicated that productivity, or amount of recruitment per amount of spawning stock, was positively related to temperature or other factors (e.g. food availability) related to temperature at intermediate to high levels of spawning stock biomass. For the shorter and most recent time period (1965–81), abundance was calculated by virtual population analysis and an attempt was made to relate temperature effects during several periods in the first year of life to recruitment levels at age 2. The mean, maximum, and minimum water temperatures during (1) September–December (spawning – early larval development), (2) January–April (overwintering and late larval development), and (3) May–August (postlarval) periods were correlated with abundance. Significant effects of mean and minimum temperature during period 2 and minimum temperature during period 3 were observed, suggesting that environmental influences on determination of year class strength occur during late larval – early juvenile phases. Possible reasons for the discrepancy between the long-term analyses bases on abundance indices and the more detailed analyses using population size estimates based on virtual population analysis are discussed. An indication of environmental limitation is also shown by density-dependent growth. Growth appears to be related to both age 2 abundance and summer water temperature. When abundance is great, its effect overcomes the positive effect of temperature (or other factors indicated by temperature). The environment also alters the availability and vulnerability of herring to the inshore fisheries. Young herring are more available and vulnerable to fixed gear during the dark phase of the moon. This effect is pronounced when abundance is low.


Sign in / Sign up

Export Citation Format

Share Document