scholarly journals Trophic interactions of meso- and macrozooplankton and fish in the Iceland Sea as evaluated by fatty acid and stable isotope analysis

2012 ◽  
Vol 69 (7) ◽  
pp. 1277-1288 ◽  
Author(s):  
Hildur Petursdottir ◽  
Stig Falk-Petersen ◽  
Astthor Gislason

Abstract Petursdottir, H., Falk-Petersen, S., and Gislason, A. 2012. Trophic interactions of meso- and macrozooplankton and fish in the Iceland Sea as evaluated by fatty acid and stable isotope analysis. – ICES Journal of Marine Science, 69: . A trophic study was carried out in August of 2007 and 2008 on the pelagic ecosystem in the Subarctic Iceland Sea. Carbon and nitrogen stable isotopes and fatty acid biomarkers were used to study trophic linkages and the trophic ecology of the most important pelagic species in this ecosystem, with emphasis on capelin (Mallotus villosus). According to 15N enrichment results, there are 3–4 trophic levels in this ecosystem excluding organisms of the microbial loop and birds and mammals. The primarily herbivorous copepod Calanus hyperboreus occupies the lowest trophic level of the animal species studied, and adult capelin and blue whiting (Micromesistius poutassou) occupy the highest level. Calanus spp. proved to be an important dietary component of most of the species studied, the euphausiid species Thysanoessa inermis and T. longicaudata being exceptions. The chaetognath Eukrohnia hamata is a pure carnivore, feeding heavily on Calanus spp., whereas most of the other zooplankton species studied practice an omnivorous–carnivorous feeding mode. The amphipod species Themisto libellula is important in the diet of adult capelin. Adult capelin and blue whiting share the same feeding habits and could therefore be competing for food.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6968 ◽  
Author(s):  
Jessica Pizarro ◽  
Felipe Docmac ◽  
Chris Harrod

Background Small fishes play fundamental roles in pelagic ecosystems, channelling energy and nutrients from primary producers to higher trophic levels. They support globally important fisheries in eastern boundary current ecosystems like the Humboldt Current System (HCS) of the SE Pacific (Chile and Peru), where fish catches are the highest in the world (per unit area). This production is associated with coastal upwelling where fisheries target small pelagic fishes including the Peruvian anchovy (Engraulis ringens). The elevated biomass attained by small pelagics is thought to reflect their low trophic position in short/simple food chains. Despite their global importance, large gaps exist in our understanding of the basic ecology of these resources. For instance, there is an ongoing debate regarding the relative importance of phytoplankton versus animal prey in anchovy diet, and ecosystem models typically assign them a trophic position (TP) of ∼2, assuming they largely consume phytoplankton. Recent work based on both relative energetic content and stable isotope analysis (SIA) suggests that this value is too low, with δ15N values indicating that anchovy TP is ca. 3.5 in the Peruvian HCS. Methods We characterised the trophic ecology of adult anchovies (n = 30), their putative prey and carnivorous jack mackerel (n = 20) captured from N Chile. SIA (δ13C and δ15N) was used to estimate the relative contribution of different putative prey resources. δ15N was used to estimate population level trophic position. Results Anchovies showed little variability in δ13C (−18.7 to −16.1‰) but varied greatly in δ15N (13.8 to 22.8‰)—individuals formed two groups with low or high δ15N values. When considered as a single group, mixing models indicated that anchovy diet was largely composed of zooplankton (median contribution: 95% credibility limits), with major contributions of crustacean larvae (0.61: 0.37–0.77) and anchovy (preflexion) larvae (0.15: 0.02–0.34), and the assimilation of phytoplankton was negligible (0.05: 0–0.22). The modal (95% credibility limits) estimate of TP for the pooled anchovy sample was 3.23 (2.93–3.58), overlapping with recent SIA-based estimates from Peru. When the two δ15N groups were analysed separately, our results indicate that the lower δ15N group largely assimilated materials from crustacean larvae (0.73: 0.42–0.88), with a TP of 2.91 (2.62–3.23). Mixing models suggested high δ15N anchovies were cannibalistic, consuming anchovy preflexion larvae (0.55: 0.11–0.74). A carnivorous trophic niche was supported by high TP (3.79: 3.48–4.16), mirroring that of carnivorous juvenile jack mackerel (Trachurus murphyi; 3.80: 3.51–4.14). Our results support recent conclusions regarding high TP values of anchovy from Peru and reveal new insights into their trophic behaviour. These results also highlight the existence of cryptic trophic complexity and ecosystem function in pelagic food webs, classically considered as simple.


2020 ◽  
Vol 103 (2) ◽  
pp. 147-162
Author(s):  
Jonathan C. P. Reum ◽  
Gregory D. Williams ◽  
Chris J. Harvey ◽  
Kelly S. Andrews ◽  
Phillip S. Levin

2011 ◽  
Vol 2 (6) ◽  
pp. 651-659 ◽  
Author(s):  
Alexandre Bec ◽  
Marie-Elodie Perga ◽  
Apostolos Koussoroplis ◽  
Gérard Bardoux ◽  
Christian Desvilettes ◽  
...  

2021 ◽  
Vol 19 (4) ◽  
Author(s):  
Rigoberto Rosas-Luis ◽  
Nancy Cabanillas-Terán ◽  
Carmen A. Villegas-Sánchez

Abstract Kajikia audax, Thunnus albacares, Katsuwonus pelamis, and Auxis spp. occupy high and middle-level trophic positions in the food web. They represent important sources for fisheries in Ecuador. Despite their ecological and economic importance, studies on pelagic species in Ecuador are scarce. This study uses stable isotope analysis to assess the trophic ecology of these species, and to determine the contribution of prey to the predator tissue. Isotope data was used to test the hypothesis that medium-sized pelagic fish species have higher δ15N values than those of the prey they consumed, and that there is no overlap between their δ13C and δ15N values. Results showed higher δ15N values for K. audax, followed by T. albacares, Auxis spp. and K. pelamis, which indicates that the highest position in this food web is occupied by K. audax. The stable isotope Bayesian ellipses demonstrated that on a long time-scale, these species do not compete for food sources. Moreover, δ15N values were different between species and they decreased with a decrease in predator size.


2018 ◽  
Vol 5 (12) ◽  
pp. 180849 ◽  
Author(s):  
Ara Monadjem ◽  
Adam Kane ◽  
Peter Taylor ◽  
Leigh R. Richards ◽  
Grant Hall ◽  
...  

Bats play important ecological roles in tropical systems, yet how these communities are structured is still poorly understood. Our study explores the structure of African bat communities using morphological characters to define the morphospace occupied by these bats and stable isotope analysis to define their dietary niche breadth. We compared two communities, one in rainforest (Liberia) and one in savannah (South Africa), and asked whether the greater richness in the rainforest was due to more species ‘packing’ into the same morphospace and trophic space than bats from the savannah, or some other arrangement. In the rainforest, bats occupied a larger area in morphospace and species packing was higher than in the savannah; although this difference disappeared when comparing insectivorous bats only. There were also differences in morphospace occupied by different foraging groups (aerial, edge, clutter and fruitbat). Stable isotope analysis revealed that the range of δ 13 C values was almost double in rainforest than in savannah indicating a greater range of utilization of basal C 3 and C 4 resources in the former site, covering primary productivity from both these sources. The ranges in δ 15 N, however, were similar between the two habitats suggesting a similar number of trophic levels. Niche breadth, as defined by either standard ellipse area or convex hull, was greater for the bat community in rainforest than in savannah, with all four foraging groups having larger niche breadths in the former than the latter. The higher inter-species morphospace and niche breadth in forest bats suggest that species packing is not necessarily competitive. By employing morphometrics and stable isotope analysis, we have shown that the rainforest bat community packs more species in morphospace and uses a larger niche breadth than the one in savannah.


2020 ◽  
Vol 375 (1804) ◽  
pp. 20190641 ◽  
Author(s):  
Cornelia W. Twining ◽  
Sami J. Taipale ◽  
Liliane Ruess ◽  
Alexandre Bec ◽  
Dominik Martin-Creuzburg ◽  
...  

To understand consumer dietary requirements and resource use across ecosystems, researchers have employed a variety of methods, including bulk stable isotope and fatty acid composition analyses. Compound-specific stable isotope analysis (CSIA) of fatty acids combines both of these tools into an even more powerful method with the capacity to broaden our understanding of food web ecology and nutritional dynamics. Here, we provide an overview of the potential that CSIA studies hold and their constraints. We first review the use of fatty acid CSIA in ecology at the natural abundance level as well as enriched physiological tracers, and highlight the unique insights that CSIA of fatty acids can provide. Next, we evaluate methodological best practices when generating and interpreting CSIA data. We then introduce three cutting-edge methods: hydrogen CSIA of fatty acids, and fatty acid isotopomer and isotopologue analyses, which are not yet widely used in ecological studies, but hold the potential to address some of the limitations of current techniques. Finally, we address future priorities in the field of CSIA including: generating more data across a wider range of taxa; lowering costs and increasing laboratory availability; working across disciplinary and methodological boundaries; and combining approaches to answer macroevolutionary questions. This article is part of the theme issue ‘The next horizons for lipids as ‘trophic biomarkers’: evidence and significance of consumer modification of dietary fatty acids’.


Author(s):  
Víctor M. Muro-Torres ◽  
Felipe Amezcua ◽  
Raul E. Lara-Mendoza ◽  
John T. Buszkiewicz ◽  
Felipe Amezcua-Linares

The trophic ecology of the chihuil sea catfish Bagre panamensis was studied through high-resolution variations in its feeding habits and trophic position (TP) in the SE Gulf of California, relevant to sex, size and season. The combined use of stomach content (SCA) and stable isotope analysis (SIA) allowed us to perform these analyses and also estimate the TP of its preys. Results of this study show that the chihuil sea catfish is a generalist and opportunistic omnivore predator that consumes primarily demersal fish and peneid shrimps. Its diet did not vary with climatic season (rainy or dry), size or sex. Results from the SIA indicated high plasticity in habitat use and prey species. The estimated TP value was 4.19, which indicates a tertiary consumer from the soft bottom demersal community in the SE Gulf of California, preying on lower trophic levels, which aids in understanding the species' trophic role in the food web. Because this species and its prey are important to artisanal and industrial fisheries in the Gulf of California, diet assimilation information is useful for the potential establishment of an ecosystem-based fisheries management in the area.


Polar Biology ◽  
2019 ◽  
Vol 42 (12) ◽  
pp. 2299-2304 ◽  
Author(s):  
José P. Queirós ◽  
Richard A. Phillips ◽  
Alexandra Baeta ◽  
José Abreu ◽  
José C. Xavier

Sign in / Sign up

Export Citation Format

Share Document