scholarly journals A problem in control of elastodynamics with piezoelectric effects

2019 ◽  
Vol 40 (4) ◽  
pp. 2839-2870
Author(s):  
Harbir Antil ◽  
Thomas S Brown ◽  
Francisco-Javier Sayas

Abstract We consider an optimal control problem where the state equations are a coupled hyperbolic–elliptic system. This system arises in elastodynamics with piezoelectric effects—the elastic stress tensor is a function of elastic displacement and electric potential. The electric flux acts as the control variable and bound constraints on the control are considered. We develop a complete analysis for the state equations and the control problem. The requisite regularity on the control, to show the well-posedness of the state equations, is enforced using the cost functional. We rigorously derive the first-order necessary and sufficient conditions using adjoint equations and further study their well-posedness. For spatially discrete (time-continuous) problems, we show the convergence of our numerical scheme. Three-dimensional numerical experiments are provided showing convergence properties of a fully discrete method and the practical applicability of our approach.

2018 ◽  
Vol 52 (5) ◽  
pp. 1617-1650 ◽  
Author(s):  
Alejandro Allendes ◽  
Enrique Otárola ◽  
Richard Rankin ◽  
Abner J. Salgado

We propose and analyze a reliable and efficienta posteriorierror estimator for a control-constrained linear-quadratic optimal control problem involving Dirac measures; the control variable corresponds to the amplitude of forces modeled as point sources. The proposeda posteriorierror estimator is defined as the sum of two contributions, which are associated with the state and adjoint equations. The estimator associated with the state equation is based on Muckenhoupt weighted Sobolev spaces, while the one associated with the adjoint is in the maximum norm and allows for unbounded right hand sides. The analysis is valid for two and three-dimensional domains. On the basis of the deviseda posteriorierror estimator, we design a simple adaptive strategy that yields optimal rates of convergence for the numerical examples that we perform.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 904
Author(s):  
Nicolae Pop ◽  
Miorita Ungureanu ◽  
Adrian I. Pop

In this paper, we discuss the question of finding an optimal control for the solutions of the problem with dry friction quasistatic contact, in the case that the friction law is modeled by a nonlocal version of Coulomb’s law. In order to get the necessary optimality conditions, we use some regularization techniques, and this leads us to a problem of control for an inequality of the variational type. The optimal control problem consists, in our case, of minimizing a sequence of optimal control problems, where the control variable is given by a Neumann-type boundary condition. The state system is represented by a limit of a sequence, whose terms are obtained from the discretization, in time with finite difference and space with the finite element method of a regularized quasistatic contact problem with Coulomb friction. The purpose of this optimal control problem is that the traction force (the control variable) acting on one side of the boundary (the Neumann boundary condition) of the elastic body produces a displacement field (the state system solution) close enough to the imposed displacement field, and the traction force from the boundary remains small enough.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Qingjin Xu ◽  
Zhaojie Zhou

In this paper, we investigate a mixed discontinuous Galerkin approximation of time dependent convection diffusion optimal control problem with control constraints based on the combination of a mixed finite element method for the elliptic part and a discontinuous Galerkin method for the hyperbolic part of the state equation. The control variable is approximated by variational discretization approach. A priori error estimates of the state, adjoint state, and control are derived for both semidiscrete scheme and fully discrete scheme. Numerical example is given to show the effectiveness of the numerical scheme.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Sudipto Chowdhury ◽  
Neela Nataraj ◽  
Devika Shylaja

AbstractConsider the distributed optimal control problem governed by the von Kármán equations defined on a polygonal domain of {\mathbb{R}^{2}} that describe the deflection of very thin plates with box constraints on the control variable. This article discusses a numerical approximation of the problem that employs the Morley nonconforming finite element method (FEM) to discretize the state and adjoint variables. The control is discretized using piecewise constants. A priori error estimates are derived for the state, adjoint and control variables under minimal regularity assumptions on the exact solution. Error estimates in lower-order norms for the state and adjoint variables are derived. The lower-order estimates for the adjoint variable and a post-processing of control leads to an improved error estimate for the control variable. Numerical results confirm the theoretical results obtained.


2017 ◽  
Vol 65 (3) ◽  
pp. 297-304
Author(s):  
A. Younus ◽  
I. Javaid ◽  
A. Zehra

AbstractIn this paper necessary and sufficient conditions of controllability and observability for solutions of the state equations of fractional continuous time linear systems with regular pencils are proposed. The derivations of the conditions are based on the construction of Gramian matrices.


2016 ◽  
Vol 16 (4) ◽  
pp. 685-702
Author(s):  
Markus Klein ◽  
Andreas Prohl

AbstractWe consider an optimal control problem subject to the thin-film equation. The PDE constraint lacks well-posedness for general right-hand sides due to possible degeneracies; state constraints are used to circumvent this problematic issue and to ensure well-posedness. Necessary optimality conditions for the optimal control problem are then derived. A convergent multi-parameter regularization is considered which addresses both, the possibly degenerate term in the equation and the state constraint. Some computational studies are then reported which evidence the relevant role of the state constraint, and motivate proper scalings of involved regularization and numerical parameters.


2019 ◽  
Vol 40 (3) ◽  
pp. 2106-2142 ◽  
Author(s):  
A Allendes ◽  
F Fuica ◽  
E Otárola

Abstract We propose and analyse reliable and efficient a posteriori error estimators for an optimal control problem that involves a nondifferentiable cost functional, the Poisson problem as state equation and control constraints. To approximate the solution to the state and adjoint equations we consider a piecewise linear finite element method, whereas three different strategies are used to approximate the control variable: piecewise constant discretization, piecewise linear discretization and the so-called variational discretization approach. For the first two aforementioned solution techniques we devise an error estimator that can be decomposed as the sum of four contributions: two contributions that account for the discretization of the control variable and the associated subgradient and two contributions related to the discretization of the state and adjoint equations. The error estimator for the variational discretization approach is decomposed only in two contributions that are related to the discretization of the state and adjoint equations. On the basis of the devised a posteriori error estimators, we design simple adaptive strategies that yield optimal rates of convergence for the numerical examples that we perform.


2019 ◽  
Vol 16 (4(Suppl.)) ◽  
pp. 1064 ◽  
Author(s):  
Jamil A. Ali Al-Hawasy

The paper is concerned with the state and proof of the existence theorem of a unique solution (state vector) of couple nonlinear hyperbolic equations (CNLHEQS) via the Galerkin method (GM) with the Aubin theorem. When the continuous classical boundary control vector (CCBCV) is known, the theorem of existence a CCBOCV with equality and inequality state vector constraints (EIESVC) is stated and proved, the existence theorem of a unique solution of the adjoint couple equations (ADCEQS) associated with the state equations is studied. The Frcéhet derivative derivation of the "Hamiltonian" is obtained. Finally the necessary theorem (necessary conditions "NCs") and the sufficient theorem (sufficient conditions" SCs") for optimality of the state constrained problem are stated and proved.  


2018 ◽  
Vol 5 (1) ◽  
pp. 11-19
Author(s):  
Jakia Sultana ◽  
Samiha Islam Tanni ◽  
Shamima Islam

Optimal Control Problem with the state equations which describes the standard SIR Model is studied here. We considered the SIR Model with vaccination and without vaccination. We formulated an optimal control problem and derived necessary conditions. Existence of the state and the objective functional are also verified. We also characterized the optimal control by Pontryagin’s maximum principle which minimizes the number of infected individuals and cost of vaccination over some finite period. Whenever the vaccination is carried out for a long period of time, the simulated result effectively works for disease with high transmission rate. Observations from the numerical simulation revels that the infectious diseases are most successfully controlled whenever control strategies were adopted at early stages. GUB JOURNAL OF SCIENCE AND ENGINEERING, Vol 5(1), Dec 2018 P 11-19


Sign in / Sign up

Export Citation Format

Share Document