Independence of ℓ \ell -adic representations of geometric Galois groups

2018 ◽  
Vol 2018 (736) ◽  
pp. 69-93 ◽  
Author(s):  
Gebhard Böckle ◽  
Wojciech Gajda ◽  
Sebastian Petersen

AbstractLetkbe an algebraically closed field of arbitrary characteristic, let{K/k}be a finitely generated field extension and letXbe a separated scheme of finite type overK. For each prime{\ell}, the absolute Galois group ofKacts on the{\ell}-adic étale cohomology modules ofX. We prove that this family of representations varying over{\ell}is almost independent in the sense of Serre, i.e., that the fixed fields inside an algebraic closure ofKof the kernels of the representations for all{\ell}become linearly disjoint over a finite extension ofK. In doing this, we also prove a number of interesting facts on the images and on the ramification of this family of representations.

2013 ◽  
Vol 149 (7) ◽  
pp. 1091-1107 ◽  
Author(s):  
Wojciech Gajda ◽  
Sebastian Petersen

AbstractLet$K$be a finitely generated extension of$\mathbb {Q}$. We consider the family of$\ell $-adic representations ($\ell $varies through the set of all prime numbers) of the absolute Galois group of$K$, attached to$\ell $-adic cohomology of a separated scheme of finite type over$K$. We prove that the fields cut out from the algebraic closure of$K$by the kernels of the representations of the family are linearly disjoint over a finite extension of K. This gives a positive answer to a question of Serre.


2017 ◽  
Vol 234 ◽  
pp. 46-86
Author(s):  
MOSHE JARDEN ◽  
SEBASTIAN PETERSEN

Let$K$be a finitely generated extension of$\mathbb{Q}$, and let$A$be a nonzero abelian variety over$K$. Let$\tilde{K}$be the algebraic closure of$K$, and let$\text{Gal}(K)=\text{Gal}(\tilde{K}/K)$be the absolute Galois group of$K$equipped with its Haar measure. For each$\unicode[STIX]{x1D70E}\in \text{Gal}(K)$, let$\tilde{K}(\unicode[STIX]{x1D70E})$be the fixed field of$\unicode[STIX]{x1D70E}$in$\tilde{K}$. We prove that for almost all$\unicode[STIX]{x1D70E}\in \text{Gal}(K)$, there exist infinitely many prime numbers$l$such that$A$has a nonzero$\tilde{K}(\unicode[STIX]{x1D70E})$-rational point of order$l$. This completes the proof of a conjecture of Geyer–Jarden from 1978 in characteristic 0.


2016 ◽  
Vol 17 (5) ◽  
pp. 1019-1064 ◽  
Author(s):  
Xavier Caruso ◽  
Agnès David ◽  
Ariane Mézard

Let $F$ be a unramified finite extension of $\mathbb{Q}_{p}$ and $\overline{\unicode[STIX]{x1D70C}}$ be an irreducible mod $p$ two-dimensional representation of the absolute Galois group of $F$. The aim of this article is the explicit computation of the Kisin variety parameterizing the Breuil–Kisin modules associated to certain families of potentially Barsotti–Tate deformations of $\overline{\unicode[STIX]{x1D70C}}$. We prove that this variety is a finite union of products of $\mathbb{P}^{1}$. Moreover, it appears as an explicit closed connected subvariety of $(\mathbb{P}^{1})^{[F:\mathbb{Q}_{p}]}$. We define a stratification of the Kisin variety by locally closed subschemes and explain how the Kisin variety equipped with its stratification may help in determining the ring of Barsotti–Tate deformations of $\overline{\unicode[STIX]{x1D70C}}$.


1985 ◽  
Vol 50 (2) ◽  
pp. 468-475 ◽  
Author(s):  
Lou van den Dries ◽  
Rick L. Smith

A field K is regularly closed if every absolutely irreducible affine variety defined over K has K-rational points. This notion was first isolated by Ax [A] in his work on the elementary theory of finite fields. Later Jarden [J2] and Jarden and Kiehne [JK] extended this in different directions. One of the primary results in this area is that the elementary properties of a regularly closed field K with a free Galois group (on either finitely or countably many generators) are determined by the set of integer polynomials in one indeterminate with a zero in K. The method of proof employed in [J1], [J2] and [JK] is unusual for algebra since it is a measure-theoretic argument. In this brief summary we have not made any attempt at completeness. We refer the reader to the recent paper of Cherlin, van den Dries, and Macintyre [CDM] and to the forthcoming book by Fried and Jarden [FJ] for a more thorough discussion of the latest results. We would like to thank Moshe Jarden, Angus Macintyre, and Zoe Chatzidakis for their comments on an earlier version of this paper.A countable field K is ω-free if the absolute Galois group , where is the algebraic closure of K and is the free profinite group on ℵ0 generators.


Author(s):  
Claudio Quadrelli

Abstract Let p be a prime number and let ${\mathbb{K}}$ be a field containing a root of 1 of order p. If the absolute Galois group $G_{\mathbb{K}}$ satisfies $\dim\, H^1(G_{\mathbb{K}},\mathbb{F}_p)\lt\infty$ and $\dim\, H^{\,2}(G_{\mathbb{K}},\mathbb{F}_p)=1$, we show that L. Positselski’s and T. Weigel’s Koszulity conjectures are true for ${\mathbb{K}}$. Also, under the above hypothesis, we show that the $\mathbb{F}_p$-cohomology algebra of $G_{\mathbb{K}}$ is the quadratic dual of the graded algebra ${\rm gr}_\bullet\mathbb{F}_p[G_{\mathbb{K}}]$, induced by the powers of the augmentation ideal of the group algebra $\mathbb{F}_p[G_{\mathbb{K}}]$, and these two algebras decompose as products of elementary quadratic algebras. Finally, we propose a refinement of the Koszulity conjectures, analogous to I. Efrat’s elementary type conjecture.


2020 ◽  
Vol 71 (4) ◽  
pp. 1377-1417
Author(s):  
Aristides Kontogeorgis ◽  
Panagiotis Paramantzoglou

Abstract The fundamental group of Fermat and generalized Fermat curves is computed. These curves are Galois ramified covers of the projective line with abelian Galois groups H. We provide a unified study of the action of both cover Galois group H and the absolute Galois group $\mathrm{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on the pro-$\ell$ homology of the curves in study. Also the relation to the pro-$\ell$ Burau representation is investigated.


1983 ◽  
Vol 92 ◽  
pp. 179-186 ◽  
Author(s):  
Hans Opolka

Letkbe a field of characteristic 0, letbe an algebraic closure ofkand denote byGk= G(/k) the absolute Galois group ofk. Suppose that for some natural numbern≥ 3 the cohomology groupHn(Gk) Z) is trivial.


2014 ◽  
Vol 2 ◽  
Author(s):  
TOBY GEE ◽  
MARK KISIN

Abstract We prove the Breuil–Mézard conjecture for two-dimensional potentially Barsotti–Tate representations of the absolute Galois group $G_{K}$ , $K$ a finite extension of $\mathbb{Q}_{p}$ , for any $p>2$ (up to the question of determining precise values for the multiplicities that occur). In the case that $K/\mathbb{Q}_{p}$ is unramified, we also determine most of the multiplicities. We then apply these results to the weight part of Serre’s conjecture, proving a variety of results including the Buzzard–Diamond–Jarvis conjecture.


Sign in / Sign up

Export Citation Format

Share Document