scholarly journals Farey Sequences for Thin Groups

Author(s):  
Christopher Lutsko

Abstract The Farey sequence is the set of rational numbers with bounded denominator. We introduce the concept of a generalized Farey sequence. While these sequences arise naturally in the study of discrete and thin subgroups, they can be used to study interesting number theoretic sequences—for example rationals whose continued fraction partial quotients are subject to congruence conditions. We show that these sequences equidistribute and the gap distribution converges and answer an associated problem in Diophantine approximation. Moreover, for one example, we derive an explicit formula for the gap distribution. For this example, we construct the analogue of the Gauss measure, which is ergodic for the Gauss map. This allows us to prove a theorem about the associated Gauss–Kuzmin statistics.

2019 ◽  
Vol 41 (2) ◽  
pp. 471-493
Author(s):  
BYRON HEERSINK

We establish the limiting distribution of certain subsets of Farey sequences, i.e., sequences of primitive rational points, on expanding horospheres in covers $\unicode[STIX]{x1D6E5}\backslash \text{SL}(n+1,\mathbb{R})$ of $\text{SL}(n+1,\mathbb{Z})\backslash \text{SL}(n+1,\mathbb{R})$, where $\unicode[STIX]{x1D6E5}$ is a finite-index subgroup of $\text{SL}(n+1,\mathbb{Z})$. These subsets can be obtained by projecting to the hyperplane $\{(x_{1},\ldots ,x_{n+1})\in \mathbb{R}^{n+1}:x_{n+1}=1\}$ sets of the form $\mathbf{A}=\bigcup _{j=1}^{J}\mathbf{a}_{j}\unicode[STIX]{x1D6E5}$, where for all $j$, $\mathbf{a}_{j}$ is a primitive lattice point in $\mathbb{Z}^{n+1}$. Our method involves applying the equidistribution of expanding horospheres in quotients of $\text{SL}(n+1,\mathbb{R})$ developed by Marklof and Strömbergsson, and more precisely understanding how the full Farey sequence distributes in $\unicode[STIX]{x1D6E5}\backslash \text{SL}(n+1,\mathbb{R})$ when embedded on expanding horospheres as done in previous work by Marklof. For each of the Farey sequence subsets, we extend the statistical results by Marklof regarding the full multidimensional Farey sequences, and solutions by Athreya and Ghosh to Diophantine approximation problems of Erdős–Szüsz–Turán and Kesten. We also prove that Marklof’s result on the asymptotic distribution of Frobenius numbers holds for sets of primitive lattice points of the form $\mathbf{A}$.


2009 ◽  
Vol 29 (5) ◽  
pp. 1451-1478 ◽  
Author(s):  
FRANCESCO CELLAROSI

AbstractWe prove the existence of the limiting distribution for the sequence of denominators generated by continued fraction expansions with even partial quotients, which were introduced by Schweiger [Continued fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg4 (1982), 59–70; On the approximation by continues fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg1–2 (1984), 105–114] and studied also by Kraaikamp and Lopes [The theta group and the continued fraction expansion with even partial quotients. Geom. Dedicata59(3) (1996), 293–333]. Our main result is proven following the strategy used by Sinai and Ulcigrai [Renewal-type limit theorem for the Gauss map and continued fractions. Ergod. Th. & Dynam. Sys.28 (2008), 643–655] in their proof of a similar renewal-type theorem for Euclidean continued fraction expansions and the Gauss map. The main steps in our proof are the construction of a natural extension of a Gauss-like map and the proof of mixing of a related special flow.


1987 ◽  
Vol 30 (2) ◽  
pp. 295-299 ◽  
Author(s):  
M. J. Jamieson

The infinite continued fractionin whichis periodic with period l and is equal to a quadratic surd if and only if the partial quotients, ak, are integers or rational numbers [1]. We shall also assume that they are positive. The transformation discussed below applies only to pure periodic fractions where n is zero.


1990 ◽  
Vol 41 (3) ◽  
pp. 509-512
Author(s):  
Jingcheng Tong

Let X = {xk}k≥1 be a sequence of positive integers. Let Qk = [O;xk,xk−1,…,x1] be the finite continued fraction with partial quotients xi(1 ≤ i ≤ k). Denote the set of the limit points of the sequence {Qk}k≥1 by Λ(X). In this note a necessary and sufficient condition is given for Λ(X) to contain no rational numbers other than zero.


Author(s):  
Vichian Laohakosol

AbstractA type of p–adic continued fraction first considered by A. Ruban is described, and is used to give a characterization of rational numbers.


2002 ◽  
Vol 45 (3) ◽  
pp. 653-671 ◽  
Author(s):  
J. L. Davison

AbstractPrecise bounds are given for the quantity$$ L(\alpha)=\frac{\limsup_{m\rightarrow\infty}(1/m)\ln q_m}{\liminf_{m\rightarrow\infty}(1/m)\ln q_m}, $$where $(q_m)$ is the classical sequence of denominators of convergents to the continued fraction $\alpha=[0,u_1,u_2,\dots]$ and $(u_m)$ is assumed bounded, with a distribution.If the infinite word $\bm{u}=u_1u_2\dots$ has arbitrarily large instances of segment repetition at or near the beginning of the word, then we quantify this property by means of a number $\gamma$, called the segment-repetition factor.If $\alpha$ is not a quadratic irrational, then we produce a specific sequence of quadratic irrational approximations to $\alpha$, the rate of convergence given in terms of $L$ and $\gamma$. As an application, we demonstrate the transcendence of some continued fractions, a typical one being of the form $[0,u_1,u_2,\dots]$ with $u_m=1+\lfloor m\theta\rfloor\Mod n$, $n\geq2$, and $\theta$ an irrational number which satisfies any of a given set of conditions.AMS 2000 Mathematics subject classification: Primary 11A55. Secondary 11B37


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 788
Author(s):  
Heewon Chung ◽  
Myungsun Kim ◽  
Ahmad Al Badawi ◽  
Khin Mi Mi Aung ◽  
Bharadwaj Veeravalli

This work is mainly interested in ensuring users’ privacy in asymmetric computing, such as cloud computing. In particular, because lots of user data are expressed in non-integer data types, privacy-enhanced applications built on fully homomorphic encryption (FHE) must support real-valued comparisons due to the ubiquity of real numbers in real-world applications. However, as FHE schemes operate in specific domains, such as that of congruent integers, most FHE-based solutions focus only on homomorphic comparisons of integers. Attempts to overcome this barrier can be grouped into two classes. Given point numbers in the form of approximate real numbers, one class of solution uses a special-purpose encoding to represent the point numbers, whereas the other class constructs a dedicated FHE scheme to encrypt point numbers directly. The solutions in the former class may provide depth-efficient arithmetic (i.e., logarithmic depth in the size of the data), but not depth-efficient comparisons between FHE-encrypted point numbers. The second class may avoid this problem, but it requires the precision of point numbers to be determined before the FHE setup is run. Thus, the precision of the data cannot be controlled once the setup is complete. Furthermore, because the precision accuracy is closely related to the sizes of the encryption parameters, increasing the precision of point numbers results in increasing the sizes of the FHE parameters, which increases the sizes of the public keys and ciphertexts, incurring more expensive computation and storage. Unfortunately, this problem also occurs in many of the proposals that fall into the first class. In this work, we are interested in depth-efficient comparison over FHE-encrypted point numbers. In particular, we focus on enabling the precision of point numbers to be manipulated after the system parameters of the underlying FHE scheme are determined, and even after the point numbers are encrypted. To this end, we encode point numbers in continued fraction (CF) form. Therefore, our work lies in the first class of solutions, except that our CF-based approach allows depth-efficient homomorphic comparisons (more precisely, the complexity of the comparison is O ( log κ + log n ) for a number of partial quotients n and their bit length κ , which is normally small) while allowing users to determine the precision of the encrypted point numbers when running their applications. We develop several useful applications (e.g., sorting) that leverage our CF-based homomorphic comparisons.


Sign in / Sign up

Export Citation Format

Share Document