scholarly journals Strong Instability of Ground States to a Fourth Order Schrödinger Equation

2017 ◽  
Vol 2019 (17) ◽  
pp. 5299-5315 ◽  
Author(s):  
Denis Bonheure ◽  
Jean-Baptiste Castéras ◽  
Tianxiang Gou ◽  
Louis Jeanjean

Abstract In this note, we prove the instability by blow-up of the ground state solutions for a class of fourth order Schrödinger equations. This extends the first rigorous results on blowing-up solutions for the biharmonic nonlinear Schrödinger due to Boulenger and Lenzmann [8] and confirm numerical conjectures from [1–3, 11].

Author(s):  
Bartosz Bieganowski ◽  
Simone Secchi

Abstract We consider the nonlinear fractional problem $$\begin{aligned} (-\Delta )^{s} u + V(x) u = f(x,u)&\quad \hbox {in } \mathbb {R}^N \end{aligned}$$ ( - Δ ) s u + V ( x ) u = f ( x , u ) in R N We show that ground state solutions converge (along a subsequence) in $$L^2_{\mathrm {loc}} (\mathbb {R}^N)$$ L loc 2 ( R N ) , under suitable conditions on f and V, to a ground state solution of the local problem as $$s \rightarrow 1^-$$ s → 1 - .


2019 ◽  
Vol 109 (2) ◽  
pp. 193-216 ◽  
Author(s):  
J. C. DE ALBUQUERQUE ◽  
JOÃO MARCOS DO Ó ◽  
EDCARLOS D. SILVA

We study the existence of positive ground state solutions for the following class of $(p,q)$-Laplacian coupled systems $$\begin{eqnarray}\left\{\begin{array}{@{}lr@{}}-\unicode[STIX]{x1D6E5}_{p}u+a(x)|u|^{p-2}u=f(u)+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D706}(x)|u|^{\unicode[STIX]{x1D6FC}-2}u|v|^{\unicode[STIX]{x1D6FD}}, & x\in \mathbb{R}^{N},\\ -\unicode[STIX]{x1D6E5}_{q}v+b(x)|v|^{q-2}v=g(v)+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D706}(x)|v|^{\unicode[STIX]{x1D6FD}-2}v|u|^{\unicode[STIX]{x1D6FC}}, & x\in \mathbb{R}^{N},\end{array}\right.\end{eqnarray}$$ where $1<p\leq q<N$. Here the coefficient $\unicode[STIX]{x1D706}(x)$ of the coupling term is related to the potentials by the condition $|\unicode[STIX]{x1D706}(x)|\leq \unicode[STIX]{x1D6FF}a(x)^{\unicode[STIX]{x1D6FC}/p}b(x)^{\unicode[STIX]{x1D6FD}/q}$, where $\unicode[STIX]{x1D6FF}\in (0,1)$ and $\unicode[STIX]{x1D6FC}/p+\unicode[STIX]{x1D6FD}/q=1$. Using a variational approach based on minimization over the Nehari manifold, we establish the existence of positive ground state solutions for a large class of nonlinear terms and potentials.


2005 ◽  
Vol 02 (04) ◽  
pp. 919-962 ◽  
Author(s):  
FRANK MERLE ◽  
PIERRE RAPHAEL

We consider the L2 critical nonlinear Schrödinger equation [Formula: see text] in the energy space H1. In the series of papers [11–15,18], we studied finite time blow up solutions for which lim t↑T < + ∞ |∇ u(t)|L2 = + ∞ and proved classification results of the blow up dynamics for the specific class of small super critical L2 mass initial data. We extend these results here to a wider class of finite time blow up solutions corresponding to the ones which accumulate at one point exactly the ground state mass. In particular, we prove the existence and stability of large L2 mass log-log type solutions which are believed to describe the generic blow up dynamics.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mauricio Bogoya ◽  
Julio D. Rossi

We study systems with different diffusions (local and nonlocal), mixed boundary conditions, and reaction terms. We prove existence and uniqueness of the solutions and then analyze global existence vs blow up in finite time. For blowing up solutions, we find asymptotic bounds for the blow-up rate.


2014 ◽  
Vol 58 (2) ◽  
pp. 305-321 ◽  
Author(s):  
Xiaojun Chang

AbstractIn this paper, we study a time-independent fractional Schrödinger equation of the form (−Δ)su + V(x)u = g(u) in ℝN, where N ≥, s ∈ (0,1) and (−Δ)s is the fractional Laplacian. By variational methods, we prove the existence of ground state solutions when V is unbounded and the nonlinearity g is subcritical and satisfies the following geometry condition:


Sign in / Sign up

Export Citation Format

Share Document