scholarly journals In vitro activity of rifabutin against 293 contemporary carbapenem-resistant Acinetobacter baumannii clinical isolates and characterization of rifabutin mode of action and resistance mechanisms

2020 ◽  
Vol 75 (12) ◽  
pp. 3552-3562
Author(s):  
Vincent Trebosc ◽  
Birgit Schellhorn ◽  
Julian Schill ◽  
Valentina Lucchini ◽  
Jacqueline Bühler ◽  
...  

Abstract Background Rifabutin, an oral drug approved to treat Mycobacterium avium infections, demonstrated potent activity against Acinetobacter baumannii in nutrient-limited medium enabled by rifabutin cellular uptake through the siderophore receptor FhuE. Objectives To determine rifabutin in vitro activity and resistance mechanisms in a large panel of A. baumannii isolates. Methods Two hundred and ninety-three carbapenem-resistant A. baumannii clinical isolates collected from Europe, the USA and Asia during 2017–19 were used for MIC determination. Sequencing/genotyping of fhuE, rpoB and arr-2 genes in isolates with elevated rifabutin MIC combined with genetic engineering and gene expression quantification was used to characterize rifabutin’s mode of action and resistance mechanisms. Results Rifabutin showed excellent activity on the strain panel, with an MIC50/90 of 0.008/1 mg/L, and was superior to all other antibiotics tested, including colistin, tigecycline and cefiderocol (MIC90 of 8 mg/L). Rifabutin remained active on resistant subpopulations, including strains resistant to the siderophore–drug conjugate cefiderocol (MIC90 of 2 mg/L, n = 23). At least two independent resistance mechanisms were required to abolish rifabutin activity, which is in line with the dose-dependent mutational resistance frequency reaching 10−9 at rifabutin concentrations at or above 2 mg/L. Conclusions This study demonstrated the potent activity of rifabutin against carbapenem-resistant A. baumannii. We propose that FhuE-mediated active uptake of rifabutin enables activity against rifampicin-resistant isolates. To achieve clinically meaningful strain coverage and to avoid rapid resistance development, rifabutin concentrations ≥2 mg/L are required, something rifabutin oral formulations cannot deliver.

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S310-S311 ◽  
Author(s):  
Olga Lomovskaya ◽  
Jill Lindley ◽  
Debora Rubio-Aparicio ◽  
Kirk J Nelson ◽  
Mariana Castanheira

Abstract Background QPX7728 (QPX) is a novel broad-spectrum boron-containing inhibitor of serine- and metallo-β-lactamases (MBLs). We evaluated the in vitro activity of QPX combined with several β-lactams against carbapenem-resistant AB (CRAB) and PSA clinical isolates with varying β-lactam resistance mechanisms. Methods A total of 503 CRAB (meropenem [MEM] MIC ≥8 µg/mL) and 762 PSA clinical isolates were tested by the reference broth microdilution method against β-lactams alone and combined with QPX (4 µg/mL and 8 µg/mL). PSA isolates were selected to represent the normal distribution of MEM, ceftazidime–avibactam (CAZ-AVI), and ceftolozane-tazobactam (TOL-TAZ) resistance according to 2017 surveillance data (representative panel). Additionally, 262 PSA isolates that were either nonsusceptible (NS) to MEM (MIC, ≥4 µg/mL) or to TOL-TAZ (MIC, ≥8 µg/mL), or resistant (R) to CAZ-AVI (MIC, ≥16 µg/mL) (challenge panel) were also tested. Within this 262 strain challenge set, 56 strains carried MBLs and the majority also had nonfunctional OprD. Results Against CRAB, QPX at 4 and 8 µg/mL increased the potency of all β-lactams tested. MEM-QPX was the most potent combination (table) displaying MIC50/MIC90 at 1/8 and 0.5/4 µg/mL with QPX at fixed 4 and 8 µg/mL, respectively. Susceptibility (S) to MEM was restored in >95% of strains. Against the 500 PSA from the representative panel, S for all QPX combinations was >90%. For the challenge panel, TOL-QPX and piperacillin (PIP)-QPX were the most potent combinations, restoring S in 76–77% of strains. TOL-QPX and MEM-QPX or cefepime (FEP)-QPX restored the MIC values to S rates when applying the CLSI breakpoint for the compound alone (comparison purposes only) in ~90% and ~75% of non-MBL-producing strains, respectively, vs. 60–70% for TOL-TAZ and CAZ-AVI. PIP-QPX reduce the MIC values to S values for PIP-TAZ in ~60% of MBL-producing strains vs. 20–30% and 3–7% for other QPX combinations and non-QPX tested combinations, respectively. Conclusion Combinations of QPX with various β-lactam antibiotics displayed potent activity against CRAB and resistant PSA isolates and warrant further investigation. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 47 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Taniya Paiboonvong ◽  
Vipavee Rodjun ◽  
Jantana Houngsaitong ◽  
Mullika Chomnawang ◽  
Preecha Montakantikul ◽  
...  

2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S375-S376 ◽  
Author(s):  
Masakatsu Tsuji ◽  
Meredith Hackel ◽  
Roger Echols ◽  
Yoshinori Yamano ◽  
Dan Sahm

Abstract Background The global rise of carbapenem resistant Gram-negative bacteria such as carbapenem-resistant Enterobacteriaceae (CRE) and carbapenem-resistant non-fermenting bacteria is alarming and become threats to patient as only a few drugs remain active (e.g. colistin). Cefiderocol (S-649266) is a novel parenteral siderophore cephalosporin with potent activity against a wide variety of Gram-negative pathogens including carbapenem-resistant strains. This study evaluated the in vitro activity of cefiderocol and comparator agents against clinical isolates collected from urinary track source from North America. Methods A total of 3,323 Enterobacteriaceae, 263 Acinetobacter spp, 509 Pseudomonas aeruginosa, and 38 Stenotrophomonas maltophilia collected from the USA and Canada in 2014–2016 were tested. MIC was determined for cefiderocol, cefepime (FEP), ceftazidime-avibactam (CZA), ceftolozane-tazobactam (C/T), ciprofloxacin (CIP), colistin (CST), and meropenem (MEM) by broth microdilution and interpreted according to CLSI 2016 guidelines. All testing was done at IHMA, Inc. As recommended by CLSI, cefiderocol was tested in iron-depleted cation-adjusted Mueller Hinton broth. Based upon CLSI breakpoints, carbapenem-non-susceptible (CarbNS) strains were defined as follows: MEM: MIC ≥2 µg/mL for Enterobacteriaceae, ≥4 µg/mL for non-fermenters. Quality control testing was performed on each day of testing by using E. coli ATCC25922 and P. aeruginosa ATCC27853. Results Cefiderocol exhibited in vitro activity against 4,133 strains of Gram-negative bacteria with an overall MIC90 of 0.5 µg/mL. At 4 µg/mL cefiderocol inhibited the growth of 99.9% of the all isolates. MIC90 of cefiderocol against CarbNS Enterobacteriaceae was 4 µg/mL although MIC90 of other comparators were >64 or >8 (CST) µg/mL. The cefiderocol MIC90value was 1 µg/mL for CarbNS non-fermeneters. Conclusion Cefiderocol demonstrated potent in vitro activity against Enterobacteriaceae, A. baumannii, P. aeruginosa, and S. maltophilia isolates collected from a UTI source, with greater than 99.9% of isolates having MIC values ≤4 µg/mL. These findings indicate that this agent has high potential for treating cUTI infections caused by these problematic organisms, including isolates resistant to colistin. Disclosures M. Tsuji, Shionogi & Co.: Employee, Salary; M. Hackel, IHMA: Employee, Salary; R. Echols, Shionogi & CO., LTD: Consultant, Consulting fee; Y. Yamano, Shionogi & Co.: Employee, Salary


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S655-S655
Author(s):  
Daniel Navas ◽  
Angela Charles ◽  
Amy Carr ◽  
Jose Alexander

Abstract Background The activity of imipenem/relebactam (I/R), ceftazidime/avibactam (CZA) and cefiderocol (FDC) were evaluated against clinical isolates of multidrug resistant (MDR) strains of P. aeruginosa which was resistant to ceftolozane/tazobactam (C/T). The recent increase of MDR P. aeruginosa strains isolated from clinical samples has prompted research and development of new antimicrobials that can withstand its multiple resistance mechanisms. C/T is an effective option for treatment of MDR P. aeruginosa in our facility with only 10% of resistance in MDR strains, but the emergence of resistance may occur due to the presence of a carbapenemase gene or an ampC mutation. Methods Antimicrobial susceptibility testing for C/T Etest® (bioMérieux, Inc.) were performed on all MDR strains initially screened by the VITEK2® (bioMérieux, Inc.). 10% (n=20) of all MDR isolates were resistant to C/T by the CLSI 2019 breakpoints. These resistant isolates were tested for presence of a carbapenemase gene using the GeneXpert CARBA-R (Cepheid®) PCR and against CZA Etest® (bioMérieux, Inc.) I/R gradient strips (Liofilchem®) and FDC broth microdilution (Thermo Scientific™ Sensititre™). Results A total of 20 clinical isolates of MDR P. aeruginosa resistant to C/T were tested following standardized CLSI protocols and techniques. All 20 isolates were screened for the presence of a carbapenemase gene (blaVIM, blaNDM, blaKPC, blaOXA-48, blaIMP). A blaVIM gene was detected in 6 (30%) out of 20 isolates. FDC demonstrated the greatest activity with 85% (n=17) of susceptible isolates (CLSI MIC <4µg/dL). CZA (CLSI MIC <8µg/dL) and I/R (FDA MIC <2µg/dL) showed 15% (n=3) and 10% (n=2) of susceptible isolates respectively. FDC was active against all 6 blaVIM isolates, where all 6 strains were resistant to CZA and I/R as expected. 3 isolates tested non-susceptible against FDC; additional characterization was not performed at this time. Conclusion Based on these results, FDC demonstrated the greatest in-vitro activity against C/T resistant strains of MDR P. aeruginosa. FDC also demonstrated activity against all 6 MDR P. aeruginosa carrying blaVIM gene. FDC is a strong option to consider on MDR P. aeruginosa strains based on a resistance testing algorithm and a cost/effective protocol. Disclosures All Authors: No reported disclosures


Chemotherapy ◽  
2003 ◽  
Vol 49 (1-2) ◽  
pp. 24-26 ◽  
Author(s):  
Felipe Fernández-Cuenca ◽  
Luis Martínez-Martínez ◽  
Alvaro Pascual ◽  
Evelio J. Perea

Sign in / Sign up

Export Citation Format

Share Document