scholarly journals Machine learning for psychiatric patient triaging: an investigation of cascading classifiers

2018 ◽  
Vol 25 (11) ◽  
pp. 1481-1487 ◽  
Author(s):  
Vivek Kumar Singh ◽  
Utkarsh Shrivastava ◽  
Lina Bouayad ◽  
Balaji Padmanabhan ◽  
Anna Ialynytchev ◽  
...  

Abstract Objective Develop an approach, One-class-at-a-time, for triaging psychiatric patients using machine learning on textual patient records. Our approach aims to automate the triaging process and reduce expert effort while providing high classification reliability. Materials and Methods The One-class-at-a-time approach is a multistage cascading classification technique that achieves higher triage classification accuracy compared to traditional multiclass classifiers through 1) classifying one class at a time (or stage), and 2) identification and application of the highest accuracy classifier at each stage. The approach was evaluated using a unique dataset of 433 psychiatric patient records with a triage class label provided by “I2B2 challenge,” a recent competition in the medical informatics community. Results The One-class-at-a-time cascading classifier outperformed state-of-the-art classification techniques with overall classification accuracy of 77% among 4 classes, exceeding accuracies of existing multiclass classifiers. The approach also enabled highly accurate classification of individual classes—the severe and mild with 85% accuracy, moderate with 64% accuracy, and absent with 60% accuracy. Discussion The triaging of psychiatric cases is a challenging problem due to the lack of clear guidelines and protocols. Our work presents a machine learning approach using psychiatric records for triaging patients based on their severity condition. Conclusion The One-class-at-a-time cascading classifier can be used as a decision aid to reduce triaging effort of physicians and nurses, while providing a unique opportunity to involve experts at each stage to reduce false positive and further improve the system’s accuracy.

Mekatronika ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 1-12
Author(s):  
Muhammad Nur Aiman Shapiee ◽  
Muhammad Ar Rahim Ibrahim ◽  
Muhammad Amirul Abdullah ◽  
Rabiu Muazu Musa ◽  
Noor Azuan Abu Osman ◽  
...  

The skateboarding scene has arrived at new statures, particularly with its first appearance at the now delayed Tokyo Summer Olympic Games. Hence, attributable to the size of the game in such competitive games, progressed creative appraisal approaches have progressively increased due consideration by pertinent partners, particularly with the enthusiasm of a more goal-based assessment. This study purposes for classifying skateboarding tricks, specifically Frontside 180, Kickflip, Ollie, Nollie Front Shove-it, and Pop Shove-it over the integration of image processing, Trasnfer Learning (TL) to feature extraction enhanced with tradisional Machine Learning (ML) classifier. A male skateboarder performed five tricks every sort of trick consistently and the YI Action camera captured the movement by a range of 1.26 m. Then, the image dataset were features built and extricated by means of  three TL models, and afterward in this manner arranged to utilize by k-Nearest Neighbor (k-NN) classifier. The perception via the initial experiments showed, the MobileNet, NASNetMobile, and NASNetLarge coupled with optimized k-NN classifiers attain a classification accuracy (CA) of 95%, 92% and 90%, respectively on the test dataset. Besides, the result evident from the robustness evaluation showed the MobileNet+k-NN pipeline is more robust as it could provide a decent average CA than other pipelines. It would be demonstrated that the suggested study could characterize the skateboard tricks sufficiently and could, over the long haul, uphold judges decided for giving progressively objective-based decision.


2020 ◽  
Author(s):  
Charalambos Themistocleous ◽  
Bronte Ficek ◽  
Kimberly Webster ◽  
Dirk-Bart den Ouden ◽  
Argye E. Hillis ◽  
...  

AbstractBackgroundThe classification of patients with Primary Progressive Aphasia (PPA) into variants is time-consuming, costly, and requires combined expertise by clinical neurologists, neuropsychologists, speech pathologists, and radiologists.ObjectiveThe aim of the present study is to determine whether acoustic and linguistic variables provide accurate classification of PPA patients into one of three variants: nonfluent PPA, semantic PPA, and logopenic PPA.MethodsIn this paper, we present a machine learning model based on Deep Neural Networks (DNN) for the subtyping of patients with PPA into three main variants, using combined acoustic and linguistic information elicited automatically via acoustic and linguistic analysis. The performance of the DNN was compared to the classification accuracy of Random Forests, Support Vector Machines, and Decision Trees, as well as expert clinicians’ classifications.ResultsThe DNN model outperformed the other machine learning models with 80% classification accuracy, providing reliable subtyping of patients with PPA into variants and it even outperformed auditory classification of patients into variants by clinicians.ConclusionsWe show that the combined speech and language markers from connected speech productions provide information about symptoms and variant subtyping in PPA. The end-to-end automated machine learning approach we present can enable clinicians and researchers to provide an easy, quick and inexpensive classification of patients with PPA.


2021 ◽  
pp. 1-10
Author(s):  
Charalambos Themistocleous ◽  
Bronte Ficek ◽  
Kimberly Webster ◽  
Dirk-Bart den Ouden ◽  
Argye E. Hillis ◽  
...  

Background: The classification of patients with primary progressive aphasia (PPA) into variants is time-consuming, costly, and requires combined expertise by clinical neurologists, neuropsychologists, speech pathologists, and radiologists. Objective: The aim of the present study is to determine whether acoustic and linguistic variables provide accurate classification of PPA patients into one of three variants: nonfluent PPA, semantic PPA, and logopenic PPA. Methods: In this paper, we present a machine learning model based on deep neural networks (DNN) for the subtyping of patients with PPA into three main variants, using combined acoustic and linguistic information elicited automatically via acoustic and linguistic analysis. The performance of the DNN was compared to the classification accuracy of Random Forests, Support Vector Machines, and Decision Trees, as well as to expert clinicians’ classifications. Results: The DNN model outperformed the other machine learning models as well as expert clinicians’ classifications with 80% classification accuracy. Importantly, 90% of patients with nfvPPA and 95% of patients with lvPPA was identified correctly, providing reliable subtyping of these patients into their corresponding PPA variants. Conclusion: We show that the combined speech and language markers from connected speech productions can inform variant subtyping in patients with PPA. The end-to-end automated machine learning approach we present can enable clinicians and researchers to provide an easy, quick, and inexpensive classification of patients with PPA.


Author(s):  
Padmavathi .S ◽  
M. Chidambaram

Text classification has grown into more significant in managing and organizing the text data due to tremendous growth of online information. It does classification of documents in to fixed number of predefined categories. Rule based approach and Machine learning approach are the two ways of text classification. In rule based approach, classification of documents is done based on manually defined rules. In Machine learning based approach, classification rules or classifier are defined automatically using example documents. It has higher recall and quick process. This paper shows an investigation on text classification utilizing different machine learning techniques.


2021 ◽  
Vol 9 (5) ◽  
pp. 1034
Author(s):  
Carlos Sabater ◽  
Lorena Ruiz ◽  
Abelardo Margolles

This study aimed to recover metagenome-assembled genomes (MAGs) from human fecal samples to characterize the glycosidase profiles of Bifidobacterium species exposed to different prebiotic oligosaccharides (galacto-oligosaccharides, fructo-oligosaccharides and human milk oligosaccharides, HMOs) as well as high-fiber diets. A total of 1806 MAGs were recovered from 487 infant and adult metagenomes. Unsupervised and supervised classification of glycosidases codified in MAGs using machine-learning algorithms allowed establishing characteristic hydrolytic profiles for B. adolescentis, B. bifidum, B. breve, B. longum and B. pseudocatenulatum, yielding classification rates above 90%. Glycosidase families GH5 44, GH32, and GH110 were characteristic of B. bifidum. The presence or absence of GH1, GH2, GH5 and GH20 was characteristic of B. adolescentis, B. breve and B. pseudocatenulatum, while families GH1 and GH30 were relevant in MAGs from B. longum. These characteristic profiles allowed discriminating bifidobacteria regardless of prebiotic exposure. Correlation analysis of glycosidase activities suggests strong associations between glycosidase families comprising HMOs-degrading enzymes, which are often found in MAGs from the same species. Mathematical models here proposed may contribute to a better understanding of the carbohydrate metabolism of some common bifidobacteria species and could be extrapolated to other microorganisms of interest in future studies.


Author(s):  
Alexis Falcin ◽  
Jean-Philippe Métaxian ◽  
Jérôme Mars ◽  
Éléonore Stutzmann ◽  
Jean-Christophe Komorowski ◽  
...  

2018 ◽  
Vol 483 (4) ◽  
pp. 5077-5104 ◽  
Author(s):  
Stavros Akras ◽  
Marcelo L Leal-Ferreira ◽  
Lizette Guzman-Ramirez ◽  
Gerardo Ramos-Larios

2014 ◽  
Vol 622 ◽  
pp. 75-80
Author(s):  
Baskar Nisha ◽  
B. Madasamy ◽  
J.Jebamalar Tamilselvi

Classification of data on genetic disease is a useful application in microarray analysis. The genetic disease data analysis has the potential for discovering the diseased genes which may be the signature of certain diseases. Machine learning methodologies and data mining techniques are used to predict genetic disease associations of bio informatics data. Among numerous existing methods for gene selection, Backpropagation algorithm has become one of the leading methods and it gives less classification accuracy. It aims to develop a new classification algorithm (Enhanced Backpropagation Algorithm) for genetic disease analysis. Knowledge derived by the Enhanced Backpropagation Algorithm has high classification accuracy with the ability to identify the most significant genes.


Sign in / Sign up

Export Citation Format

Share Document