scholarly journals Determination of Tilmicosin in Bovine and Porcine Sera by Liquid Chromatography

1997 ◽  
Vol 80 (6) ◽  
pp. 1183-1190 ◽  
Author(s):  
John W Moran ◽  
James M Turner ◽  
Mark R Coleman

Abstract A liquid chromatographic (LC) assay is described for determining tilmicosin in bovine and porcine blood sera. Tilmicosin is isolated from the serum matrix and purified by solid-phase extraction with C18 sorbent. Sample is analyzed by LC using a gradient system with a phenyl reversed-phase column that separates tilmicosin from the matrix in 30 min. Tilmicosin is measured by UV absorbance at 280 nm. Validation of assay included evaluation of accuracy, precision, linearity, specificity, sensitivity, range, and sample stability. The method has a limit of quantitation of 0.1 ppm and a validated range of 0.1 to 10.0 ppm. Recoveries were 91–95% for bovine serum and 85–93% porcine serum. The limit of detection was 0.05 (μg/mL. Limits of detection and quantitation were based on 3 and 6 times the baseline noise of control serum samples, respectively. Relative standard deviations of precision samples (n = 6) were 2% or less for both sera. The method has better specificity and analysis time than previous microbiological methods for tilmicosin in sera.

2001 ◽  
Vol 84 (5) ◽  
pp. 1358-1362 ◽  
Author(s):  
Jeffrey M van de Riet ◽  
Natalie N Brothers ◽  
Johanna N Pearce ◽  
B Garth Burns

Abstract A liquid chromatographic (LC) method for determining residues of the antiparasitic drugs emamectin (EMA) and ivermectin (IVR) in fish tissues has been developed. EMA and IVR residues are extracted with acetonitrile and cleaned up on a C18 solid-phase extraction column. Extracts are derivatized with 1-methylimidazole and trifluoroacetic anhydride and the components are determined by LC on a C18 reversed-phase column with fluorescence detection (excitation: 365 nm, emission: 470 nm). The mobile phase is 94% acetonitrile–water run isocratically. Calibration curves were linear between 1 and 32 ng injected for both EMA and IVR. The limit of detection for both analytes was 0.5 ng/g, with a limit of quantitation of 1.5 ng/g. Recoveries of EMA and IVR added to salmon muscle averaged 96 ± 9% and 86 ± 6%, respectively, at levels between 5 and 80 ng/g. The percent relative standard deviation for the described method was less than 7% over the range of concentrations studied. The operational errors, interferences, and recoveries for fortified samples compare favorably with an established IVR method. The recommended method is simple, rapid, and specific for monitoring residues of EMA and IVR in Atlantic salmon muscle.


Author(s):  
Dilshad Ahmad ◽  
Faisal A. Al Meshaiti ◽  
Yazeed K. Al Anazi ◽  
Osama Al Owassil ◽  
Alaa Eldeen B. Yassin

Anastrozole, an aromatase inhibitor drug, is used for the treatment of breast cancer in pre- and postmenopausal women. Anastrozole’s incorporation into nanoparticulate carriers would enhance its therapeutic performance. To perceive the exact loaded amount of drug in nanocarriers, a valid analytical method is required. The reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated by using the C18 column, 150 × 4.6 mm, 5 µm particle size, in isocratic mobile phase composed of 50:50 V/V (volume/volume) acetonitrile–phosphate buffer (pH 3) flowing at a rate of 1.0 mL/min, and a diode array detector (DAD) set at λmax = 215 nm. The validation parameters such as linearity, accuracy, specificity, precision, and robustness have proven the accuracy of the method, with the relative standard deviation percentage (% RSD) values < 2. The limit of detection of the method was found equal to 0.0150 µg/mL, and the limit of quantitation was 0.0607 µg/mL. The percent recovery of sample was in the range of 98.04–99.25%. The method has the advantage of being rapid with a drug retention time of 2.767 min, specific in terms of resolution of peaks void of interference with any of the excipients, and high reproducibility. This makes it highly applicable for quality control purposes.


1999 ◽  
Vol 82 (5) ◽  
pp. 1140-1145 ◽  
Author(s):  
G William Chase ◽  
Ronald R Eitenmiller ◽  
Austin R Long

Abstract A liquid chromatographic method for vitamin K1 in milk-based infant formula is described. The vitamins are extracted from infant formula by matrix solid-phase dispersion and quantitated by reversed-phase chromatography with fluorescence detection. Vitamin K1 is converted to the fluorescent hydroquinone with a postcolumn zinc reductive reactor. The limit of detection is 12 pg, and the limit of quantitation is 38 pg on-column. Linear responses were obtained in the range 0.55-22.1 ng/mL (r2 = 0.9998). Recoveries of vitamin K1 from an analyte-fortified blank material for milk-based infant formula averaged 91.7% (n = 25). The method provides a rapid, specific, and easily controlled assay for vitamin K1 in fortified infant formula.


1999 ◽  
Vol 82 (1) ◽  
pp. 90-94 ◽  
Author(s):  
George M Ware ◽  
Yuhong Zhao ◽  
Shia S Kuan ◽  
Allen S Carman

Abstract A liquid chromatographic method is described for the determination of zearalenol and zearalenone in corn. Zearalenol and zearalenone are extracted from corn with methanol–water (1+1) and cleaned up using a solid-phase extraction (SPE) disk, separatedon a reversed-phase analytical column, and detected with a fluorescence detector. The SPE disk concentrated and cleanly separated zearalenol and zearalenone from sample interferences. Standard calibration curves for zearalenol and zearalenone for the concentration range 25–500 ng/mL were linear. The small extract disk had a column capacity equivalent to 1 g extracted corn. Zearalenol and zearalenone were added at levels ranging from 10 to 2000 ng/g to a control sample that contained no detectable levels of zearalenol and zearalenone. Both toxins were recovered from spiked samples at 106.3 and 103.8%, with coefficients of variation of 7.6 and 13.0%, respectively. The method has an estimated reliable limit of detection and limit of quantitation around 10 and 40 ng/g for each toxin, respectively.


2000 ◽  
Vol 83 (4) ◽  
pp. 957-962 ◽  
Author(s):  
George M Ware ◽  
G William Chase ◽  
Ronald R Eitenmiller ◽  
Austin R Long

Abstract A liquid chromatographic (LC) method is described for the determination of vitamin K1 in medical foods. The sample is enzymatically digested with lipase and α-amylase and extracted with 1% sodium bicarbonate solution–isopropanol (1 + 1). After C18 solid-phase extraction, vitamin K1 is separated by nonaqueous reversed-phase LC, converted to the hydroquinone by postcolumn zinc reduction, and quantitated by fluorescence detection. The limit of detection is 8 pg (3 σ), and the limit of quantitation is 27 pg (10 σ) on column. Linear response ranged from 0.1 to 1.0 ng vitamin K1 (r = 0.9999). The mean recovery (n = 38) for all spiking levels was 101.6 ± 2.85%. Analysis of Standard Reference Material 1846, Infant Formula, gave a mean value of 0.95 ± 0.088 mg vitamin K/kg (K or K1?)(n = 31) with a coefficient of variation of 9.26.


2009 ◽  
Vol 92 (1) ◽  
pp. 302-306 ◽  
Author(s):  
Xiao-Jing Yan ◽  
Xiao-Mei Liang ◽  
Yan-Jun Xu ◽  
Shu-Hui Jin ◽  
Dao-Quan Wang

Abstract A method was developed for the determination of 7B3 (12-propyloxyimino-1,15-pentadecanlactam), a novel macrolactam fungicide, by liquid chromatography/mass spectrometry (LC/MS) with positive electrospray ionization (ESI+). The method used a reversed-phase C18 column and acetonitrilewater (60 + 40, v/v) mobile phase. The quick, easy, cheap, effective, rugged, and safe method was used for extraction of 7B3 from cotton plants, which involved the extraction of 10 g homogenized sample with 10 mL acetonitrile, followed by the addition of 4 g anhydrous MgSO4 and 1.0 g NaCl. After centrifugation, 1 mL of the buffered acetonitrile extract was transferred into a tube containing 50 mg primary secondary amine sorbent and 100 mg anhydrous MgSO4. After shaking and centrifugation, the final extract was transferred to an autosampler vial for concurrent analysis by LC/MS. The results of 7B3 determined by LC/MS in the selective ion monitoring mode were linear, and the matrix effect of the method was evaluated. The average recoveries of 7B3 fortified at different levels were within 84.1100.2, and the relative standard deviations were &lt;7.5 for all samples analyzed. The method limit of detection and the limit of quantitation values were 0.03 and 0.1 mg/kg, respectively. The proposed method was successfully applied to determine 7B3 residues in practical samples. This method is sensitive, accurate, reliable, simple, and safe.


2019 ◽  
Vol 8 (1) ◽  
pp. 17-21
Author(s):  
Lanlan Wei ◽  
Jianjun Deng ◽  
Tao Kang ◽  
Xuejun Kang

A method for the determination of Rhodamine B in sausage was developed and validated. After extraction of Rhodamine B with acetonitrile from foodstuffs, a novel electrospun polymer nanofibers packed micro-column was used for cleaning and concentrating of the analyte in the sample. High performance liquid chromatography with fluorescence detection (HPLC-Flu) was used for the determination of Rhodamine B in the sample. The mobile phase was composed of 3.0 g L-1 phosphate buffer and methanol (3:7, volume ratio), and the pH was adjusted to 7. 0 with orthophosphoric acid. The results showed that the standard curve was linear over the validated concentrations range of 2-500 ng g-1, and the limit of detection (LOD) and the limit of quantitation (LOQ) for Rhodamine B spiked samples was 0. 2 ng g-1 and 0. 7 ng g-1, respectively. The average recoveries of Rhodamine B were 90.4% -94.3% for sausage, and the relative standard deviation of the method was from 1.7% to 3.8%. This proposed method was applied to real sample, and there was no Rhodamine B found in sausage.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiao-Ying Lu ◽  
Yan-Qin Ouyang ◽  
Wei-Ya Zeng ◽  
Cui-Qing Lin ◽  
Lu-Hua Xiao ◽  
...  

This study aimed to develop a method, followed by gas chromatography-mass spectrometry, for detecting 37 pesticides in Chrysanthemum indicum (C. indicum) and investigating the decrease in the matrix-induced enhancement effect. The influence of QuEChERS extraction and matrix solid-phase dispersion (MSPD) on the recovery and matrix effect (ME) was compared. extraction and matrix solid-phase dispersion (MSPD) on the recovery and matrix effect (ME) was compared to decrease the ME. The cleanup sorbents, volume and type of solvent, and treatment time were optimized. The accuracy (as recovery), precision (as relative standard deviation, RSD), linearity, limit of quantitation, and limit of detection were determined. The recoveries at the three levels using mixed standard solution ranged between 76% and 120% with RSD ≤15%, and 76% and 120% with RSD ≤11% for MSPD and QuEChERS extraction, respectively. The results suggested that the ME for 21 pesticides was in the range of 80%–120% after MSPD and 15% after QuEChERS extraction. QuEChERS extraction was simpler and faster than MSPD. This methodology was applied in the analysis of 27 C. indicum samples; phorate was most frequently detected (63.0% of the sample).


2016 ◽  
Vol 73 (2) ◽  
pp. 146-151
Author(s):  
Snezana Djordjevic ◽  
Jasmina Jovic-Stosic ◽  
Vesna Kilibarda ◽  
Zoran Segrt ◽  
Natasa Perkovic-Vukcevic

Backgound/Aim. Flumazenil is benzodiazepine receptor antagonist. It has been studied for a various indications, including reversal of sedation after surgery or diagnostic procedures, awakening of comatose patients in benzodiazepine overdose, or for symptomatic treatment of hepatic encephalopathy. Some drugs, like theophylline, may prolong its elimination half-life. Considering the long half-life of diazepam and its metabolites, concomitant use of theophylline may reduce the need for repeated dosing of flumazenil in patients with acute diazepam poisoning. The aim of this study was to introduce a reliable and accurate method for determining the concentration of flumazenil after therapeutic application in patients with acute poisoning, and using that method to assess whether the kinetics of flumazenil change in the presence of aminophylline (combination of theophylline and ethylenediamine in a 2 : 1 ratio) applied as concomitant therapy. Methods. Blood samples from patients with acute diazepam poisoning that received flumazenil at the dose of 0.5 mg, or the same dose with 3 mg/kg of body weight of aminophylline, were collected 1, 3, 10, 30, 60, 120 and 240 min after its intravenous administration. Samples were prepared by solid-phase extraction on Oasis HLB cartridges with ethylacetate as extracting agens. Flumazenil was determined by liquid chromatography with mass spectrometry (LC-MS) in single ion monitoring mode at m/z 304. Separation of flumazenil from matrix compound was performed on Lichrospher RP-8 column using the mixture of acidic acetonitrile and 20 mM of ammonium acetate in water (55 : 45) as a mobile phase. Results. The applied analitycal method showed excellent recovery (94.65%). The obtained extracts were much cleaner than the extracts obtained by the same extractant in the process of liquid-liquid extraction. The limit of detection of the LC-MS method described in this paper was 0.5 ng/mL and the limit of quantitation was 1 ng/mL. In the patients treated with both flumazenil and aminophylline, the elimination constant for flumazenil was significantly lower and the elimination half-life was longer (p < 0.05) in comparison with the same parameters in the patients who received flumazenil alone. Conclusion. The applied LC-MS method for the determination of flumazenil in serum samples of patients with acute diazepam poisoning is rapid, sensitive, precise and specific. Concomitant use with theophylline significantly prolonged elimination of flumazenil during the treatment of acute poisonings with diazepam.


Pharmacia ◽  
2022 ◽  
Vol 69 (1) ◽  
pp. 21-24
Author(s):  
Stefan Balkanski

Purpose: A simple, specific, precise, and accurate reversed phase liquid chromatographic (RP-LC) method has been developed for the determination of Escitalopram in tablet dosage form. Methods: The chromatographic separation was achieved on a LiChrosorb C18, 250 mm x 4.6 mm, 5 μm column at a detector wavelength of 270 nm and a flow rate of 1.0 ml/min. The mobile phase was composed of methanol, acetonitrile (70:30 v/v). The retention time of Escitalopram was 5.49 min. The method was validated for the parameters like specificity, linearity, precision, accuracy, limit of quantitation and limit of detection. Results: The method was found to be specific as no other peaks of impurities and excipients were observed. The square of correlation coefficient (R2) was 0.9999 while relative standard deviations were found to be &lt;2.0%. Conclusion: The proposed RP-LC method can be applied for the routine analysis of commercially available formulations of Escitalopram.


Sign in / Sign up

Export Citation Format

Share Document