scholarly journals Reversed-Phase Ultra-Performance Liquid Chromatographic Method Development and Validation for Determination of Impurities Related to Torsemide Tablets

2011 ◽  
Vol 94 (1) ◽  
pp. 143-149 ◽  
Author(s):  
Hitesh B Patel ◽  
Arivozhi Mohan ◽  
Hitendra S Joshi

Abstract A simple RP-ultra-performance LC method was developed and validated for determination of impurities related to torsemide tablets. The rapid method provided adequate separation of all known related impurities and degradation products. Separation was achieved on a Zorbax SB-C18 column (50 × 4.6 mm id, 1.8 μm particle size) with binary gradient elution, and detection was performed at 288 nm. The drug product was subjected to oxidative, hydrolytic, photolytic, and thermal stress conditions to prove the specificity of the proposed method. The linearity and recovery were investigated for known impurities in the range of 0.025 to 1.0%, with respect to the drug concentration in the prepared sample. The linearity of the calibration curve for each of the impurities and torsemide was found to be very good (r2 > 0.999). Relative response factors for each of the known impurities were established by the slope ratio method from the linearity study.

2011 ◽  
Vol 8 (1) ◽  
pp. 131-148 ◽  
Author(s):  
Trivedi Rakshit Kanubhai ◽  
Patel Mukesh C ◽  
Kharkar Amit R

In the present study gradient reversed-phase UPLC method was developed for simultaneous determination and separation of impurities and degradation products from drug product. The chromatographic separation was performed on acquity UPLC BEH C18 column (50 mm×2.1 mm, 1.7 µm) using gradient elution. Other UPLC parameters which were optimised are flow rate, 0.7 mL/min; detection wavelength, 220 nm; column oven temperature, 40°C and injection volume 7 µL. Stability indicating capability was established by forced degradation experiments and separation of known degradation products. The method was validated as per International Conference on Harmonization (ICH) guideline. For all impurities and mesalamine, LOQ (limit of quantification) value was found precise with RSD (related standard daviation) of less than 2.0%. In essence, the present study provides an improved low detection limit and lower run time for evaluation of pharmaceutical quality of mesalamine delayed-release formulation. Moreover, the developed method was successfully applied for quantification of impurities and degradation products in mesalamine delayed-release formulation. The same method can also be used for determination of related substances from mesalamine drug substance.


2011 ◽  
Vol 30 (2) ◽  
pp. 139 ◽  
Author(s):  
Ana Petkovska ◽  
Hristina Babunovska ◽  
Marina Stefova

Quality control of pharmaceuticals requires development of fast, efficient and reliable methods for determination of active compounds as well as known and very often unknown impurities within defined concentration ranges. In this work, a simple and rapid HPLC-UV-DAD method for identification and quantification of pholcodine process related impurities and some degradation products was developed and validated. Pholcodine and its five structural analogues such as morphine, codeine, thebaine, oripavine, and papaverine were separated in less than 10 minutes using reversed phase LiChrospher C-8 column. For optimal chromatographic performance with reproducible retention times, gradient elution with 2% ammonium hydroxide in water and acetonitrile was used. The method was validated by establishing its selectivity, specifity, sensitivity, linearity, intra- and inter-day precision and robustness. All tested parameters confirmed that the method is suitable for determination of pholcodine and its five impurities in pharmaceutical drug samples. The results obtained from real sample analysis give support to the suitability of the proposed method for the purpose of quality control.


2011 ◽  
Vol 57 ◽  
pp. 37-41
Author(s):  
Jelena Acevska ◽  
Gjoshe Stefkov ◽  
Natalija Nakov ◽  
Marija Karapandzova ◽  
Svetlana Kulevanova ◽  
...  

In this work, a convenient method for determination of relative UV response factors (RRFs) of morphine, codeine, thebaine, oripavine, noscapine and papaverine by high performance liquid chromatography (HPLC) equipped with a diode array detector (DAD) was presented. Pholcodine was selected as the reference compound for calculating the relative response factors of the alkaloids. The separation of all seven compounds was obtained with optimized gradient elution with high pH value of the mobile phase on a reversed phase column with bidentate C18-C18 bonding technology. The RRFs of the alkaloids were determinate by three different approaches: ‘regression analysis/mass concentration’, ‘regression analysis/molar concentration’and ‘detector sensitivity’ approaches. The ‘regression analysis/molar concentration’ approach gave the accurate approximation of the exact amount of the substance that enters in the detector and the statistically relevant calculation includes several points of different concentrations (at least five), which makes this approach most advantageous one. This method is suitable for quality assessment of the standardised opium dry extract, raw opium and standardised opium tincture by quantitative analysis of not only morphine and codeine as indicated in the respective European Pharmacopoeia monographs, but as well as the major impurities that originate from opium poppy Papaver somniferum L. (Papaveraceae).


2020 ◽  
Vol 16 ◽  
Author(s):  
Ola Mohamed EL-Houssini ◽  
Nagwan Hamdi Zawilla ◽  
Mohammad Abdul-Azim Mohammad

Background: Acefylline (Acef) is a derivative of theophylline that has bronchodilator effects. Two binary mixtures were marketed for Acef: Acefylline piperazine/ Phenobarbitone (Acef-P/Phen) and Acefylline heptaminol/ Cinnarizine (Acef-H/ Cinn). To our knowledge none of the reported methods had the capacity to determine Acef in its binary mixture in presence of its degradation products and potential impurity theophylline (Theo). Methods: Two validated RP-LC methods were established for the determination of Acef-P/Phen and Acef-H/ Cinn in presence of Acef degradation products and its potential impurity Theo. A complete study of the forced acidic, alkaline and oxidative degradation of Acef was presented. The methods were based on LC separation on RP C18 columns using isocratic and gradient elution for Acef-P /Phen and Acef-H /Cinn mixtures, respectively. Different chromatographic conditions were examined and optimized. Results: Linear responses were attained over concentration ranges of 75-500/15-1000 μg/mL and 100-1000 /50- 500 μg/mL with mean percentage recoveries of (100.72±1.23)%/ (99.29±1.12)% and (100.44±1.27)%/ (99.01±0.97)% for Acef-P/Phen and Acef-H /Cinn, respectively. ICH guidelines were used for methods validation and all parameters were found to be acceptable. Conclusion: The methods showed to be accurate, precise and specific for the analysis of Acef-P/Phen and AcefH /Cinn in drug substance, drug product and in laboratory prepared mixtures in presence of Theo and up to 50% of degradation products. The structures of the main degradation products and the expected degradation pathway were suggested using the MS data.


2019 ◽  
Vol 15 (7) ◽  
pp. 694-702
Author(s):  
Sonia Talaat Hassib ◽  
Hanaa Abdelmenem Hashem ◽  
Marwa Ahmed Fouad ◽  
Nehal Essam Eldin Mohamed

Introduction: (COPD) Chronic Obstructive Pulmonary Disease is a partially reversible and treatable lung disease, characterized by progressive limitation of airflow. It is one of the main causes of mortality and morbidity worldwide. Methods: An easy, precise and selective reversed-phase liquid chromatographic method, with stabilityindicating assay was established and validated for the determination of indacaterol maleate and glycopyrronium bromide in the mixture. In addition, a forced degradation study was performed for indacaterol maleate, comprised of hydrolysis by acid and base, degradation by oxidation and heat, and photo-degradation. Separation and forced degradation were done by isocratic elution using a reversed phase phenyl column and (methanol: phosphate buffer) at ratio (65:35, v/v) with 3.5 pH buffer as an eluent at 1 mL min-1 as a flow rate. Quantitation was accomplished using a UV detector at 210 nm. Results: The method showed good separation of glycopyrronium bromide, indacaterol maleate and its degradation products. Accuracy, linearity, and precision were acceptable over 10-160 µg mL-1 and 10- 80 µg mL-1 concentration range for indacaterol maleate and glycopyrronium bromide, respectively. Conclusion: The proposed method does not require any previously done separation steps, making it applicable for the analysis of the drugs under investigation in their pharmaceutically marketed preparations.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Vita Giaccone ◽  
Giuseppe Polizzotto ◽  
Andrea Macaluso ◽  
Gaetano Cammilleri ◽  
Vincenzo Ferrantelli

The aim of our present work was the development of a rapid high-performance liquid chromatography method with electrospray ionization and tandem mass spectrometry detection (LC-ESI-MS/MS) for the determination of several corticosteroids in cosmetic products. Corticosteroids are suspected to be illegally added in cosmetic preparations in order to enhance the curative effect against some skin diseases. Sample preparation step consists in a single extraction with acetonitrile followed by centrifugation and filtration. The compounds were separated by reversed-phase chromatography with water and acetonitrile (both with 0.1% formic acid) gradient elution and detected by ESI-MS positive and negative ionization mode. The method was validated at the validation level of 0.1 mg kg−1. Linearity was studied in the 5–250 μg L−1 range and linear coefficients (r2) were all over 0.99. The accuracy and precision of the method were satisfactory. The LOD ranged from 0.085 to 0.109 mg kg−1 and the LOQ from 0.102 to 0.121 mg kg−1. Mean recoveries for all the analytes were within the range 91.9–99.2%. The developed method is sensitive and useful for detection, quantification, and confirmation of these corticosteroids in cosmetic preparations and can be applied in the analysis of the suspected samples under investigation.


2016 ◽  
Vol 8 (30) ◽  
pp. 5949-5956 ◽  
Author(s):  
Soumia Boulahlib ◽  
Ali Boudina ◽  
Kahina Si-Ahmed ◽  
Yassine Bessekhouad ◽  
Mohamed Trari

In this study, a rapid and simple method based on reversed-phase high performance liquid chromatography (RP-HPLC) using a photodiode array detector (PDA) for the simultaneous analysis of five pollutants including aniline and its degradation products, para-aminophenol, meta-aminophenol, ortho-aminophenol and phenol, was developed.


1997 ◽  
Vol 80 (4) ◽  
pp. 751-755 ◽  
Author(s):  
Theresa A Gehring ◽  
Larry G Rushing ◽  
Harold C Thompson

Abstract Fourteen sulfonamides—sulfanilamide, sulfadiazine, sulfathiazole, sulfapyridine, sulfam- erazine, sulfamethazine, sulfamethizole, sulfamethoxypyridazine, sulfachloropyridazine, sulfamonomethoxine, suļfadoxine, sulfamethoxazole, sulfadimethoxine, and sulfaquinoxoline—residues of which could be found in aquacultured species, were separated in <25 min by reversed-phase (C18) liquid chromatography (LC) with gradient elution. Analytes were extracted from edible salmon tissue (muscle and adhering skin) with acetonitrile—2% aqueous acetic acid, isolated with 2 liquid-liquid partitionings, and derivatized with fluorescamine after eluting from the column. The derivatives were detected by fluorescence. Recoveries (n = 4) from coho salmon fortified with sulfonamides at 5,10, and 20 ng/g tissue averaged 79.7± 7.3, 84.6 ± 7.7, and 88.2 ± 7.1%, respectively. Limits of quantitation were 5 ng/g tissue, for sulfanilamide, sulfamethoxypyridazine, and sulfaquinoxoline and 1 ng/g tissue for the remaining sulfonamides.


1998 ◽  
Vol 44 (7) ◽  
pp. 1481-1488 ◽  
Author(s):  
Maria Shipkova ◽  
Paul Dieter Niedmann ◽  
Victor William Armstrong ◽  
Ekkehard Schütz ◽  
Eberhard Wieland ◽  
...  

Abstract We describe a reversed-phase HPLC method for determination of total mycophenolic acid (MPA), its free concentration (MPAf), and the glucuronide metabolite (MPAG), based on simple sample preparation and gradient elution chromatography. The compounds were quantified in parallel by absorbance at 254 nm and 215 nm in the internal standard mode. Linearity was verified up to 50 mg/L for MPA and up to 500 mg/L for MPAG (r >0.999). Detection limits at 215 and 254 nm were, respectively, 0.01 and 0.03 mg/L for MPA, and 0.03 and 0.1 mg/L for MPAG. The recovery of MPA was 95–106%;recovery of MPAG was 96–106%. The imprecision (CV) for MPA (0.2–25 mg/L) was <8.4% (254 nm) and <4.4% (215 nm) within day (n = 12) and <9.2% (254 nm) and <6.2% (215 nm) between days (n = 12). The imprecision for MPAG (10–250 mg/L) was <4.9% (254 nm) and <3.4% (215 nm) within day, and <6.1% (254 nm) and <5.9% (215 nm) between days. For quantification of MPAf, 100 μL of ultrafiltrate was applied directly to the column. The detection limit was 0.005 mg/L at 215 nm and 0.015 mg/L at 254 nm. In the range between 18–210 μg/L, the within-day CVs were <11.8% (n = 12) and the between-day CVs were <15.8% (n = 12).


Sign in / Sign up

Export Citation Format

Share Document