518 Late-Breaking: Effect of Feedlot Diets on Environmental Emissions from Four Representative U.S. Feedlots and the Beef Production System

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 154-154
Author(s):  
Jessica Gilreath ◽  
Al Rotz ◽  
Sara Place ◽  
Greg Thoma ◽  
Tryon Wickersham

Abstract Our objective was to evaluate effects of feedlot dietary management strategies on environmental impacts and net returns of feedlot operations in the United States. Representative feedlots were simulated with the Integrated Farm System Model (IFSM 4.6; USDA-ARS, University Park, PA) to quantify baseline environmental impacts of feedlot production and full US beef cattle production systems. The simulated dietary strategies included: 10% increase in feed efficiency, use of less water intensive forages, 10% increase in byproduct inclusion, 10% improvement in water use efficiency of corn, and steam-flaking of corn. Days on feed and head finished per year were held constant for all strategies to have equal comparisons to baseline results. Dietary management strategies were individually modeled and simulated in IFSM for each feedlot operation to obtain intensities (expressed per kg gain) for greenhouse gas (GHG) emissions, fossil energy use, blue water consumption, and reactive nitrogen loss. Feedlot operations were then linked with cow-calf, stocker, and backgrounding operations to estimate environmental intensities (expressed per kg CW) for full cattle production systems. Improving feed efficiency had the greatest effect on reducing carbon emission intensities (6%), energy use intensity (8%), blue water use intensity (9%), and reactive N loss intensity (4%) for feedlot operations. Increasing corn byproduct inclusion resulted in 9% reduction in blue water use intensity. However, byproduct inclusion increased reactive N loss intensity by 11% as a result of greater protein concentrations in the diet. Switching from rolled corn to steam flaked corn increased energy use intensity by 9%, but little to no changes (1% increase to 3% reduction) were observed for other environmental intensities. Improved feed efficiency was the most effective strategy to reduce environmental footprints of beef cattle production (1 to 2% reductions). Overall, feedlot dietary strategies were less pronounced for the full beef production system compared with feedlot results.

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 130-131
Author(s):  
Jessica Baber ◽  
Tryon Wickersham ◽  
Sara Place ◽  
Al Rotz

Abstract Estimates of beef cattle production’s national and regional cradle to farm grate environmental impacts have been quantified. As baseline footprints are now established, cow-calf dietary and production management strategies can be evaluated for their capacity to reduce environmental impacts. Accordingly, our objective was to quantify environmental changes from implementing management strategies in cow-calf production. Ten management strategies were identified, with each related to animal performance, feed management, or pasture management. Each strategy was incorporated into a representative cow-calf operation for each of 6 major regions of beef production in the United States and simulated with the Integrated Farm System Model (IFSM) using local soil and climate data. A combined strategy was also identified based on results of the individual strategies, which was simulated with IFSM. Farm-gate life cycle assessment was used to estimate carbon (C) footprint, fossil energy use, blue water use, and total reactive nitrogen (N) loss for all production systems and strategy combinations. Averages of each environmental metric for the cow-calf sector were based on weighted averages of regional cow inventory data. Averaged across all strategies, the reduction in C footprint was 4.1% and fossil energy use was reduced 3.5% for the cow-calf sector. Improved feed efficiency (8.0%) and terminal cross (7.1%) strategies reduced C footprint to a greater extent than other strategies simulated (2.0%). Fossil energy use was reduced by 8.3, and 6.5% from improved feed efficiency and terminal cross strategies, respectively. Early weaning increased C footprint, fossil energy use, blue water use, and reactive N loss by 13.8, 17.8, 20.2, and 12.7%, respectively. The combined strategy, including improved feed efficiency, improved fiber digestion, calf implant use, increased weaning rate, reduced cow body weight, and terminal cross strategies, reduced C footprint (18%), fossil fuel use (18%), blue water use (23%), and reactive N loss (15%).


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 130-130
Author(s):  
Jessica Baber ◽  
Tryon Wickersham ◽  
Sara Place ◽  
Al Rotz

Abstract As baseline environmental footprints of beef cattle production are established, mitigation strategies through cow-calf dietary and production management can be evaluated. Our objective was to quantify environmental benefits obtained by beef cattle production through implementation of cow-calf management strategies. Ten cow-calf management strategies were identified related to animal performance, feed management, or pasture management. Each strategy was incorporated into 20 representative beef cattle production systems and simulated with the Integrated Farm System Model (IFSM) using local soil and climate data. A combined strategy was identified based upon the results of individual strategies, which was also simulated with IFSM. Farm-gate life cycle assessment was used to estimate carbon (C) footprint, fossil energy use, blue water use, and total reactive nitrogen (N) loss for all production systems and strategy combinations. Averages of each environmental metric for the cow-calf sector were based on weighted averages of regional cow inventory data. National estimates of environmental impacts were based upon number of cattle represented by each production system. Feed efficiency, terminal cross sires, and reduced cow body size strategies had greatest effect on C footprint (reductions of 1.31, 1.15, and 0.71 kg CO2e/kg CW, respectively from a baseline of 16.34 kg CO2e/kg CW). Calving season, reduced cow body size, and improved fiber digestion increased fossil energy use (7.8%), while improved feed efficiency and calf implant use reduced fossil energy use (7.4%). Blue water use was reduced by a greater extent from improved feed efficiency (4.6%) and reduced cow body size (5.3%) compared to other strategies (0.6%). Total reactive N loss was reduced by 7.0 and 6.9% through improved feed efficiency and reduced cow body size, respectively. Combining strategies reduced C footprint (18.2%), fossil energy use (18.6%), blue water use (18.9%), and reactive N loss (16.2%).


2021 ◽  
Vol 194 ◽  
pp. 103247
Author(s):  
Maria Paula Cavuto Abrão Calvano ◽  
Ricardo Carneiro Brumatti ◽  
Jacqueline Cavalcante Barros ◽  
Marcos Valério Garcia ◽  
Kauê Rodriguez Martins ◽  
...  

2015 ◽  
Vol 47 (7) ◽  
pp. 1255-1260 ◽  
Author(s):  
Matheus Dhein Dill ◽  
Gabriel Ribas Pereira ◽  
João Batista Gonçalves Costa ◽  
Leonardo Canali Canellas ◽  
Vanessa Peripolli ◽  
...  

2014 ◽  
Vol 65 (7) ◽  
pp. 583 ◽  
Author(s):  
J. A. Kirkegaard ◽  
J. R. Hunt ◽  
T. M. McBeath ◽  
J. M. Lilley ◽  
A. Moore ◽  
...  

Improving the water-limited yield of dryland crops and farming systems has been an underpinning objective of research within the Australian grains industry since the concept was defined in the 1970s. Recent slowing in productivity growth has stimulated a search for new sources of improvement, but few previous research investments have been targeted on a national scale. In 2008, the Australian grains industry established the 5-year, AU$17.6 million, Water Use Efficiency (WUE) Initiative, which challenged growers and researchers to lift WUE of grain-based production systems by 10%. Sixteen regional grower research teams distributed across southern Australia (300–700 mm annual rainfall) proposed a range of agronomic management strategies to improve water-limited productivity. A coordinating project involving a team of agronomists, plant physiologists, soil scientists and system modellers was funded to provide consistent understanding and benchmarking of water-limited yield, experimental advice and assistance, integrating system science and modelling, and to play an integration and communication role. The 16 diverse regional project activities were organised into four themes related to the type of innovation pursued (integrating break-crops, managing summer fallows, managing in-season water-use, managing variable and constraining soils), and the important interactions between these at the farm-scale were explored and emphasised. At annual meetings, the teams compared the impacts of various management strategies across different regions, and the interactions from management combinations. Simulation studies provided predictions of both a priori outcomes that were tested experimentally and extrapolation of results across sites, seasons and up to the whole-farm scale. We demonstrated experimentally that potential exists to improve water productivity at paddock scale by levels well above the 10% target by better summer weed control (37–140%), inclusion of break crops (16–83%), earlier sowing of appropriate varieties (21–33%) and matching N supply to soil type (91% on deep sands). Capturing synergies from combinations of pre- and in-crop management could increase wheat yield at farm scale by 11–47%, and significant on-farm validation and adoption of some innovations has occurred during the Initiative. An ex post economic analysis of the Initiative estimated a benefit : cost ratio of 3.7 : 1, and an internal return on investment of 18.5%. We briefly review the structure and operation of the initiative and summarise some of the key strategies that emerged to improve WUE at paddock and farm-scale.


2019 ◽  
Vol 11 (23) ◽  
pp. 6840 ◽  
Author(s):  
Ashraf Zaied ◽  
Hatim Geli ◽  
Jerry Holechek ◽  
Andres Cibils ◽  
Mohammed Sawalhah ◽  
...  

In support of Food-Energy-Water Systems (FEWS) analysis to enhance its sustainability for New Mexico (NM), this study evaluated observed trends in beef cattle population in response to environmental and economic changes. The specific goal was to provide an improved understanding of the behavior of NM’s beef cattle production systems relative to precipitation, temperature, rangeland conditions, production of hay and crude oil, and prices of hay and crude oil. Historical data of all variables were available for the 1973–2017 period. The analysis was conducted using generalized autoregressive conditional heteroscedasticity models. The results indicated declining trends in beef cattle population and prices. The most important predictors of beef cattle population variation were hay production, mean annual hay prices, and mean annual temperature, whereas mean annual temperature, cattle feed sold, and crude oil production were the most important predictors for calf population that weigh under 500 lb. Prices of beef cattle showed a strong positive relationship with crude oil production, mean annual hay prices, rangeland conditions, and mean annual precipitation. However, mean annual temperature had a negative relationship with mean annual beef prices. Variation in mean annual calf prices was explained by hay production, mean annual temperature, and crude oil production. This analysis suggested that NM’s beef cattle production systems were affected mainly and directly by mean annual temperature and crude oil production, and to a lesser extent by other factors studied in this research.


2014 ◽  

Beef Cattle Production and Trade covers all aspects of the beef industry from paddock to plate. It is an international text with an emphasis on Australian beef production, written by experts in the field. The book begins with an overview of the historical evolution of world beef consumption and introductory chapters on carcass and meat quality, market preparation and world beef production. North America, Brazil, China, South-East Asia and Japan are discussed in separate chapters, followed by Australian beef production, including feed lotting and live export. The remaining chapters summarise R&D, emphasising the Australian experience, and look at different production systems and aspects of animal husbandry such as health, reproduction, grazing, feeding and finishing, genetics and breeding, production efficiency, environmental management and business management. The final chapter examines various case studies in northern and southern Australia, covering feed demand and supply, supplements, pasture management, heifer and weaner management, and management of internal and external parasites.


PLoS ONE ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. e0240819
Author(s):  
Qihui Yang ◽  
Don M. Gruenbacher ◽  
Jessica L. Heier Stamm ◽  
David E. Amrine ◽  
Gary L. Brase ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document