Structural analysis and reaction mechanism oaf malate dehydrogenase from Geobacillus stearothermophilus

Author(s):  
Yuya Shimozawa ◽  
Tomoki Himiyama ◽  
Tsutomu Nakamura ◽  
Yoshiaki Nishiya

Abstract Malate dehydrogenase (MDH) catalyzes the reversible reduction of oxaloacetate (OAA) to L-malate using nicotinamide adenine dinucleotide hydrogen. MDH has two characteristic loops, the mobile loop and the catalytic loop, in the active site. On binding to the substrate, the enzyme undergoes a structural change from the open-form, with an open conformation of the mobile loop, to the closed-form, with the loop in a closed conformation. In this study, three crystals of MDH from a moderate thermophile, Geobacillus stearothermophilus (gs-MDH) were used to determine four different enzyme structures (resolutions, 1.95–2.20 Å), each of which was correspondingly assigned to its four catalytic states. Two OAA-unbound structures exhibited the open-form, while the other two OAA-bound structures exhibited both the open- and closed-form. The structural analysis suggested that the binding of OAA to the open-form gs-MDH promotes conformational change in the mobile loop and simultaneously activates the catalytic loop. The mutations on the key amino acid residues involving the proposed catalytic mechanism significantly affected the gs-MDH activity, supporting our hypothesis. These findings contribute to the elucidation of the detailed molecular mechanism underlying the substrate recognition and structural switching during the MDH catalytic cycle.

2020 ◽  
pp. jbc.RA120.015305
Author(s):  
Renuka Kadirvelraj ◽  
Jeong-Yeh Yang ◽  
Hyun Woo Kim ◽  
Justin H. Sanders ◽  
Kelley W. Moremen ◽  
...  

Poly-N-acetyl-lactosamine (poly-LacNAc) structures are composed of repeating [-Galβ(1,4)-GlcNAcβ(1,3)-]n glycan extensions. They are found on both N- and O­-glycoproteins and glycolipids, and play an important role in development, immune function, and human disease. The majority of mammalian poly-LacNAc is synthesized by the alternating iterative action of β1,3-N-acetylglucosaminyltransferase 2 (B3GNT2) and β1,4-galactosyltransferases. B3GNT2 is in the largest mammalian glycosyltransferase family, GT31, but little is known about the structure, substrate recognition, or catalysis by family members. Here we report the structures of human B3GNT2 in complex with UDP:Mg2+, and in complex with both UDP:Mg2+ and a glycan acceptor, lacto-N-neotetraose. The B3GNT2 structure conserves the GT-A fold and the DxD motif that coordinates a Mg2+ ion for binding the UDP-GlcNAc sugar donor. The acceptor complex shows interactions with only the terminal Galβ(1,4)-GlcNAcβ(1,3)- disaccharide unit, which likely explains the specificity for both N- and O-glycan acceptors. Modeling of the UDP-GlcNAc donor supports a direct displacement inverting catalytic mechanism. Comparative structural analysis indicates that nucleotide sugar donors for GT-A fold glycosyltransferases bind in similar positions and conformations without conserving interacting residues, even for enzymes that use the same donor substrate. In contrast, the B3GNT2 acceptor binding site is consistent with prior models suggesting that the evolution of acceptor specificity involves loops inserted into the stable GT-A fold. These observations support the hypothesis that GT-A fold glycosyltransferases employ co-evolving donor, acceptor, and catalytic subsite modules as templates to achieve the complex diversity of glycan linkages in biological systems.


Biochemistry ◽  
2008 ◽  
Vol 47 (3) ◽  
pp. 978-985 ◽  
Author(s):  
Federico Forneris ◽  
Dominic P. H. M. Heuts ◽  
Manuela Delvecchio ◽  
Stefano Rovida ◽  
Marco W. Fraaije ◽  
...  

2018 ◽  
Vol 24 (33) ◽  
pp. 8382-8392 ◽  
Author(s):  
Matilde de las Rivas ◽  
Helena Coelho ◽  
Ana Diniz ◽  
Erandi Lira-Navarrete ◽  
Ismael Compañón ◽  
...  

Biochemistry ◽  
2003 ◽  
Vol 42 (10) ◽  
pp. 2895-2906 ◽  
Author(s):  
Noureddine Rhazi ◽  
Paulette Charlier ◽  
Dominique Dehareng ◽  
Danièle Engher ◽  
Marcel Vermeire ◽  
...  

1993 ◽  
Vol 292 (1) ◽  
pp. 69-74 ◽  
Author(s):  
W Asmara ◽  
U Murdiyatmo ◽  
A J Baines ◽  
A T Bull ◽  
D J Hardman

The chemical modification of L-2-haloacid halidohydrolase IVa (Hdl IVa), originally identified in Pseudomonas cepacia MBA4, produced as a recombinant protein in Escherichia coli DH5 alpha, led to the identification of histidine and arginine as amino acid residues likely to play a part in the catalytic mechanism of the enzyme. These results, together with DNA sequence and analyses [Murdiyatmo, Asmara, Baines, Bull and Hardman (1992) Biochem. J. 284, 87-93] provided the basis for the rational design of a series of random- and site-directed-mutagenesis experiments of the Hdl IVa structural gene (hdl IVa). Subsequent apparent kinetic analyses of purified mutant enzymes identified His-20 and Arg-42 as the key residues in the activity of this halidohydrolase. It is also proposed that Asp-18 is implicated in the functioning of the enzyme, possibly by positioning the correct tautomer of His-20 for catalysis in the enzyme-substrate complex and stabilizing the protonated form of His-20 in the transition-state complex. Comparison of conserved amino acid sequences between the Hdl IVa and other halidohydrolases suggests that L-2-haloacid halidohydrolases contain conserved amino acid sequences that are not found in halidohydrolases active towards both D- and L-2-monochloropropionate.


2008 ◽  
Vol 377 (1) ◽  
pp. 268-280 ◽  
Author(s):  
Fanomezana M. Ranaivoson ◽  
Mathias Antoine ◽  
Brice Kauffmann ◽  
Sandrine Boschi-Muller ◽  
André Aubry ◽  
...  

1971 ◽  
Vol 33 (3) ◽  
pp. 951-965 ◽  
Author(s):  
Bo Ekehammar

An analysis was performed on individuals' perceptions of the cards in the Rorschach test using psychophysical methodology. Ss gave similarity ratings on a numerical scale. Both a dimensional and a category analysis were performed on individual and group data. The results gave a clear and psychologically interpretable structure. The perception of the Rorschach cards was shown to be a function of the three stimulus properties: (a) open form, (b) closed form, and (c) color. The agreement in perceptual structure among individuals was shown to be considerable in this homogeneous “normal” group. Some sex differences were observed. Further use of the methodology is discussed.


2004 ◽  
Vol 186 (20) ◽  
pp. 6915-6927 ◽  
Author(s):  
Vladimir V. Lunin ◽  
Yunge Li ◽  
Joseph D. Schrag ◽  
Pietro Iannuzzi ◽  
Miroslaw Cygler ◽  
...  

ABSTRACT Intracellular glucose in Escherichia coli cells imported by phosphoenolpyruvate-dependent phosphotransferase system-independent uptake is phosphorylated by glucokinase by using ATP to yield glucose-6-phosphate. Glucokinases (EC 2.7.1.2) are functionally distinct from hexokinases (EC 2.7.1.1) with respect to their narrow specificity for glucose as a substrate. While structural information is available for ADP-dependent glucokinases from Archaea, no structural information exists for the large sequence family of eubacterial ATP-dependent glucokinases. Here we report the first structure determination of a microbial ATP-dependent glucokinase, that from E. coli O157:H7. The crystal structure of E. coli glucokinase has been determined to a 2.3-Å resolution (apo form) and refined to final R work/R free factors of 0.200/0.271 and to 2.2-Å resolution (glucose complex) with final R work/R free factors of 0.193/0.265. E. coli GlK is a homodimer of 321 amino acid residues. Each monomer folds into two domains, a small α/β domain (residues 2 to 110 and 301 to 321) and a larger α+β domain (residues 111 to 300). The active site is situated in a deep cleft between the two domains. E. coli GlK is structurally similar to Saccharomyces cerevisiae hexokinase and human brain hexokinase I but is distinct from the ADP-dependent GlKs. Bound glucose forms hydrogen bonds with the residues Asn99, Asp100, Glu157, His160, and Glu187, all of which, except His160, are structurally conserved in human hexokinase 1. Glucose binding results in a closure of the small domains, with a maximal Cα shift of ∼10 Å. A catalytic mechanism is proposed that is consistent with Asp100 functioning as the general base, abstracting a proton from the O6 hydroxyl of glucose, followed by nucleophilic attack at the γ-phosphoryl group of ATP, yielding glucose-6-phosphate as the product.


2019 ◽  
Vol 476 (4) ◽  
pp. 719-732 ◽  
Author(s):  
Mykola M. Ilchenko ◽  
Mariia Yu. Rybak ◽  
Alex V. Rayevsky ◽  
Oksana P. Kovalenko ◽  
Igor Ya. Dubey ◽  
...  

Abstract d-aminoacyl-tRNA-deacylase (DTD) prevents the incorporation of d-amino acids into proteins during translation by hydrolyzing the ester bond between mistakenly attached amino acids and tRNAs. Despite extensive study of this proofreading enzyme, the precise catalytic mechanism remains unknown. Here, a combination of biochemical and computational investigations has enabled the discovery of a new substrate-assisted mechanism of d-Tyr-tRNATyr hydrolysis by Thermus thermophilus DTD. Several functional elements of the substrate, misacylated tRNA, participate in the catalysis. During the hydrolytic reaction, the 2′-OH group of the А76 residue of d-Tyr-tRNATyr forms a hydrogen bond with a carbonyl group of the tyrosine residue, stabilizing the transition-state intermediate. Two water molecules participate in this reaction, attacking and assisting ones, resulting in a significant decrease in the activation energy of the rate-limiting step. The amino group of the d-Tyr aminoacyl moiety is unprotonated and serves as a general base, abstracting the proton from the assisting water molecule and forming a more nucleophilic ester-attacking species. Quantum chemical methodology was used to investigate the mechanism of hydrolysis. The DFT-calculated deacylation reaction is in full agreement with the experimental data. The Gibbs activation energies for the first and second steps were 10.52 and 1.05 kcal/mol, respectively, highlighting that the first step of the hydrolysis process is the rate-limiting step. Several amino acid residues of the enzyme participate in the coordination of the substrate and water molecules. Thus, the present work provides new insights into the proofreading details of misacylated tRNAs and can be extended to other systems important for translation fidelity.


Sign in / Sign up

Export Citation Format

Share Document