acceptor specificity
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 10)

H-INDEX

25
(FIVE YEARS 2)

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1795
Author(s):  
Markus B. Tomek ◽  
Bettina Janesch ◽  
Matthias L. Braun ◽  
Manfred Taschner ◽  
Rudolf Figl ◽  
...  

Diverse members of the Bacteroidetes phylum have general protein O-glycosylation systems that are essential for processes such as host colonization and pathogenesis. Here, we analyzed the function of a putative fucosyltransferase (FucT) family that is widely encoded in Bacteroidetes protein O-glycosylation genetic loci. We studied the FucT orthologs of three Bacteroidetes species—Tannerella forsythia, Bacteroides fragilis, and Pedobacter heparinus. To identify the linkage created by the FucT of B. fragilis, we elucidated the full structure of its nine-sugar O-glycan and found that l-fucose is linked β1,4 to glucose. Of the two fucose residues in the T. forsythia O-glycan, the fucose linked to the reducing-end galactose was shown by mutational analysis to be l-fucose. Despite the transfer of l-fucose to distinct hexose sugars in the B. fragilis and T. forsythia O-glycans, the FucT orthologs from B. fragilis, T. forsythia, and P. heparinus each cross-complement the B. fragilis ΔBF4306 and T. forsythia ΔTanf_01305 FucT mutants. In vitro enzymatic analyses showed relaxed acceptor specificity of the three enzymes, transferring l-fucose to various pNP-α-hexoses. Further, glycan structural analysis together with fucosidase assays indicated that the T. forsythia FucT links l-fucose α1,6 to galactose. Given the biological importance of fucosylated carbohydrates, these FucTs are promising candidates for synthetic glycobiology.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chengyuan Wang ◽  
Jianxu Li ◽  
Miaolian Ma ◽  
Zhaozhu Lin ◽  
Wenli Hu ◽  
...  

Phenolamides represent one of the largest classes of plant-specialized secondary metabolites and function in diverse physiological processes, including defense responses and development. The biosynthesis of phenolamides requires the BAHD-family acyltransferases, which transfer acyl-groups from different acyl-donors specifically to amines, the acyl-group acceptors. However, the mechanisms of substrate specificity and multisite-acylation of the BAHD-family acyltransferases remain poorly understood. In this study, we provide a structural and biochemical analysis of AtSHT and AtSDT, two representative BAHD-family members that catalyze the multisite acylation of spermidine but show different product profiles. By determining the structures of AtSHT and AtSDT and using structure-based mutagenesis, we identified the residues important for substrate recognition in AtSHT and AtSDT and hypothesized that the acyl acceptor spermidine might adopt a free-rotating conformation in AtSHT, which can undergo mono-, di-, or tri-acylation; while the spermidine molecule in AtSDT might adopt a linear conformation, which only allows mono- or di-acylation to take place. In addition, through sequence similarity network (SSN) and structural modeling analysis, we successfully predicted and verified the functions of two uncharacterized Arabidopsis BAHD acyltransferases, OAO95042.1 and NP_190301.2, which use putrescine as the main acyl-acceptor. Our work provides not only an excellent starting point for understanding multisite acylation in BAHD-family enzymes, but also a feasible methodology for predicting possible acyl acceptor specificity of uncharacterized BAHD-family acyltransferases.


2020 ◽  
pp. jbc.RA120.015305
Author(s):  
Renuka Kadirvelraj ◽  
Jeong-Yeh Yang ◽  
Hyun Woo Kim ◽  
Justin H. Sanders ◽  
Kelley W. Moremen ◽  
...  

Poly-N-acetyl-lactosamine (poly-LacNAc) structures are composed of repeating [-Galβ(1,4)-GlcNAcβ(1,3)-]n glycan extensions. They are found on both N- and O­-glycoproteins and glycolipids, and play an important role in development, immune function, and human disease. The majority of mammalian poly-LacNAc is synthesized by the alternating iterative action of β1,3-N-acetylglucosaminyltransferase 2 (B3GNT2) and β1,4-galactosyltransferases. B3GNT2 is in the largest mammalian glycosyltransferase family, GT31, but little is known about the structure, substrate recognition, or catalysis by family members. Here we report the structures of human B3GNT2 in complex with UDP:Mg2+, and in complex with both UDP:Mg2+ and a glycan acceptor, lacto-N-neotetraose. The B3GNT2 structure conserves the GT-A fold and the DxD motif that coordinates a Mg2+ ion for binding the UDP-GlcNAc sugar donor. The acceptor complex shows interactions with only the terminal Galβ(1,4)-GlcNAcβ(1,3)- disaccharide unit, which likely explains the specificity for both N- and O-glycan acceptors. Modeling of the UDP-GlcNAc donor supports a direct displacement inverting catalytic mechanism. Comparative structural analysis indicates that nucleotide sugar donors for GT-A fold glycosyltransferases bind in similar positions and conformations without conserving interacting residues, even for enzymes that use the same donor substrate. In contrast, the B3GNT2 acceptor binding site is consistent with prior models suggesting that the evolution of acceptor specificity involves loops inserted into the stable GT-A fold. These observations support the hypothesis that GT-A fold glycosyltransferases employ co-evolving donor, acceptor, and catalytic subsite modules as templates to achieve the complex diversity of glycan linkages in biological systems.


Glycobiology ◽  
2020 ◽  
Vol 30 (12) ◽  
pp. 9003-9014
Author(s):  
Alexander Kocev ◽  
Jacob Melamed ◽  
Vladimir Torgov ◽  
Leonid Danilov ◽  
Vladimir Veselovsky ◽  
...  

Abstract The O antigen of enterotoxigenic Escherichia coli serotype O117 consists of repeating units with the structure [-D-GalNAcβ1-3-L-Rhaα1-4-D-Glcα1-4-D-Galβ1-3-D-GalNAcα1-4]n. A related structure is found in E. coli O107 where Glc is replaced by a GlcNAc residue. The O117 and O107 antigen biosynthesis gene clusters are homologous and reveal the presence of four putative glycosyltransferase (GT) genes, wclW, wclX, wclY and wclZ, but the enzymes have not yet been biochemically characterized. We show here that the His6-tagged WclY protein expressed in E. coli Lemo21(DE3) cells is an α1,4-Glc-transferase that transfers Glc to the Gal moiety of Galβ1-3GalNAcα-OPO3-PO3-phenoxyundecyl as a specific acceptor and that the diphosphate moiety of this acceptor is required. WclY utilized UDP-Glc, TDP-Glc, ADP-Glc, as well as UDP-GlcNAc, UDP-Gal or UDP-GalNAc as donor substrates, suggesting an unusual broad donor specificity. Activity using GDP-Man suggested the presence of a novel Man-transferase in Lemo21(DE3) cells. Mutations of WclY revealed that both Glu residues of the Ex7E motif within the predicted GT domain are essential for activity. High GlcNAc-transferase (GlcNAc-T) activities of WclY were created by mutating Arg194 to Cys. A triple mutant identical to WclY in E. coli O107 was identified as an α1,4 GlcNAc-T. The characterization of WclY opens the door for the development of antibacterial approaches.


2019 ◽  
Vol 20 (24) ◽  
pp. 6181 ◽  
Author(s):  
Cecilia Garcia-Oliva ◽  
Pilar Hoyos ◽  
Lucie Petrásková ◽  
Natalia Kulik ◽  
Helena Pelantová ◽  
...  

Fungal β-N-acetylhexosaminidases, though hydrolytic enzymes in vivo, are useful tools in the preparation of oligosaccharides of biological interest. The β-N-acetylhexosaminidase from Talaromyces flavus is remarkable in terms of its synthetic potential, broad substrate specificity, and tolerance to substrate modifications. It can be heterologously produced in Pichia pastoris in a high yield. The mutation of the Tyr470 residue to histidine greatly enhances its transglycosylation capability. The aim of this work was to identify the structural requirements of this model β-N-acetylhexosaminidase for its transglycosylation acceptors and formulate a structure–activity relationship study. Enzymatic reactions were performed using an activated glycosyl donor, 4-nitrophenyl N-acetyl-β-d-glucosaminide or 4-nitrophenyl N-acetyl-β-d-galactosaminide, and a panel of glycosyl acceptors of varying structural features (N-acetylglucosamine, glucose, N-acetylgalactosamine, galactose, N-acetylmuramic acid, and glucuronic acid). The transglycosylation products were isolated and structurally characterized. The C-2 N-acetamido group in the acceptor molecule was found to be essential for recognition by the enzyme. The presence of the C-2 hydroxyl moiety strongly hindered the normal course of transglycosylation, yielding unique non-reducing disaccharides in a low yield. Moreover, whereas the gluco-configuration at C-4 steered the glycosylation into the β(1-4) position, the galacto-acceptor afforded a β(1-6) glycosidic linkage. The Y470H mutant enzyme was tested with acceptors based on β-glycosides of uronic acid and N-acetylmuramic acid. With the latter acceptor, we were able to isolate and characterize one glycosylation product in a low yield. To our knowledge, this is the first example of enzymatic glycosylation of an N-acetylmuramic acid derivative. In order to explain these findings and predict enzyme behavior, a modeling study was accomplished that correlated with the acquired experimental data.


Parasitology ◽  
2019 ◽  
Vol 146 (14) ◽  
pp. 1767-1772 ◽  
Author(s):  
Borja López-Gutiérrez ◽  
Marta Cova ◽  
Luis Izquierdo

AbstractC-mannosylation was recently identified in the thrombospondin-related anonymous protein (TRAP) from Plasmodium falciparum salivary gland sporozoites. A candidate P. falciparum C-mannosyltransferase (PfDPY-19) was demonstrated to modify thrombospondin type 1 repeat (TSR) domains in vitro, exhibiting a different acceptor specificity than their mammalian counterparts. According to the described minimal acceptor of PfDPY19, several TSR domain-containing proteins of P. falciparum could be C-mannosylated in vivo. However, the relevance of this protein modification for the parasite viability remains unknown. In the present study, we used CRISPR/Cas9 technology to generate a PfDPY19 null mutant, demonstrating that this glycosyltransferase is not essential for the asexual blood development of the parasite. PfDPY19 gene disruption was not associated with a growth phenotype, not even under endoplasmic reticulum-stressing conditions that could impair protein folding. The data presented in this work strongly suggest that PfDPY19 is unlikely to play a critical role in the asexual blood stages of the parasite, at least under in vitro conditions.


2019 ◽  
Vol 287 ◽  
pp. e221
Author(s):  
V. Myasoedova ◽  
M. Iltchuk ◽  
V. Orekhova ◽  
A. Orekhov

Amylase ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 19-31 ◽  
Author(s):  
Ki-Tae Kim ◽  
Chan-Su Rha ◽  
Young Sung Jung ◽  
Ye-Jin Kim ◽  
Dong-Hyun Jung ◽  
...  

Abstract Amylosucrase (ASase; EC 2.4.1.4), a versatile enzyme, exhibits three characteristic activities: hydrolysis, isomerization, and transglycosylation. In this study, a novel ASase derived from Deinococcus wulumuquiensis (DWAS) was identified and expressed in Escherichia coli. The optimal reaction temperature and pH for the sucrose hydrolysis activity of DWAS were determined to be 45 °C and 9.0, respectively. DWAS displays relatively high thermostability compared with other ASases, as demonstrated by half-life of 96.7 and 4.7 min at 50 °C and 55 °C, respectively. DWAS fused with 6×His was successfully purified to apparent homogeneity with a molecular mass of approximately 72 kDa by Ni-NTA affinity chromatography and confirmed by SDS-PAGE. DWAS transglycosylation activity can be used to modify isovitexin, a representative flavone C-glucoside contained in buckwheat sprouts to increase its limited bioavailability, which is due to its low absorption rate and unstable structure in the human body. Using isovitexin as a substrate, the major transglycosylation product of DWAS was found to be isovitexin monoglucoside. The comparison of transglycosylation reaction products of DWAS with those of other ASases derived from Deinococcus species revealed that the low sequence homology of loop 8 in ASases may affect the acceptor specificity of ASases and result in a distinctive acceptor specificity of DWAS.


2019 ◽  
Vol 21 (10) ◽  
pp. 2823-2836 ◽  
Author(s):  
Linh T. Tran ◽  
Vincent Blay ◽  
Sukanya Luang ◽  
Chatchakorn Eurtivong ◽  
Sunaree Choknud ◽  
...  
Keyword(s):  

Transglycosidases have potential to catalyze the synthesis of high-value compounds from biomass-derived feedstocks. Cheminformatics can help design more active and versatile catalysts and discover new substrates.


2019 ◽  
Vol 9 (11) ◽  
pp. 2931-2944 ◽  
Author(s):  
Andrea Hill ◽  
Lily Chen ◽  
Aline Mariage ◽  
Jean-Louis Petit ◽  
Véronique de Berardinis ◽  
...  

Mining for new levansucrase enzymes with high levan production, transfructosylating activity, and thermal stability and studying their kinetics and acceptor specificity.


Sign in / Sign up

Export Citation Format

Share Document