catalytic loop
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Beat Vogeli ◽  
Alexandra Born ◽  
Janne Soetbeer ◽  
Morkos Henen ◽  
Frauke Breitgoff ◽  
...  

Abstract Pin1 is a two-domain cell regulator that isomerizes peptidyl-prolines. The catalytic domain (PPIase) and the other ligand-binding domain (WW) sample extended and compact conformations. Ligand binding changes the equilibrium of the interdomain conformations, but the conformational changes that lead to the altered domain sampling were unknown. Prior evidence has supported an interdomain allosteric mechanism. We recently introduced a magnetic resonance-based protocol that allowed us to determine the coupling of intra- and interdomain structural sampling in apo Pin1. Here, we describe ligand-specific conformational changes that occur upon binding of pCDC25c and FFpSPR. pCDC25c binding doubles the population of the extended states compared to the virtually identical populations of the apo and FFpSPR-bound forms. pCDC25c binding to the WW domain triggers conformational changes to propagate via the interdomain interface to the catalytic site, while FFpSPR binding displaces a helix in the PPIase that leads to repositioning of the PPIase catalytic loop.


2021 ◽  
Author(s):  
Ruidan Shen ◽  
Rory M. Crean ◽  
Keith J. Olsen ◽  
Teisha Richan ◽  
Tiago A. S. Brandão ◽  
...  

Protein tyrosine phosphatases (PTPs) possess a mobile, conserved catalytic loop, the WPD-loop, which brings an aspartic acid into the active site where it acts as an acid/base catalyst. Prior experimental and computational studies, focused on the human enzyme PTP1B and the PTP from Yersinia pestis, YopH, suggested that loop conformational dynamics are important in regulating both catalysis and evolvability. Also, work on Chimeras of YopH bearing parts of the WPD-loop sequence from PTP1B demonstrated unusual structural perturbations and reduced activity. In the present study, we have generated a chimeric protein in which the WPD-loop of YopH is transposed into PTP1B, and eight chimeras that systematically restored the loop sequence back to native PTP1B. Of these, four chimeras were soluble and were subjected to detailed biochemical and structural characterization, and a computational analysis of their WPD-loop dynamics in catalysis. These chimeras maintain backbone structural integrity, with somewhat slower rates than either wild-type parent, despite unaltered chemical mechanisms and transition states. The chimeric proteins’ WPD-loops differ significantly in their relative stability and rigidity. In particular, the open WPD-loops sample multiple metastable and interconverting conformations. The time required for interconversion, coupled with electrostatic effects revealed by simulations, likely accounts for the activity differences between chimeras, and relative to the native enzymes. These differences in loop dynamics affect both the pH dependency of catalysis and turnover rate. Our results further the understanding of connections between enzyme activity and the dynamics of catalytically important groups, particularly the effects of non-catalytic residues on key conformational equilibria.


2021 ◽  
Vol 7 (23) ◽  
pp. eabd9224
Author(s):  
Jian Fang ◽  
Sarah M. Leichter ◽  
Jianjun Jiang ◽  
Mahamaya Biswal ◽  
Jiuwei Lu ◽  
...  

DNA methylation is a major epigenetic mechanism critical for gene expression and genome stability. In plants, domains rearranged methyltransferase 2 (DRM2) preferentially mediates CHH (H = C, T, or A) methylation, a substrate specificity distinct from that of mammalian DNA methyltransferases. However, the underlying mechanism is unknown. Here, we report structure-function characterization of DRM2-mediated methylation. An arginine finger from the catalytic loop intercalates into the nontarget strand of DNA through the minor groove, inducing large DNA deformation that affects the substrate preference of DRM2. The target recognition domain stabilizes the enlarged major groove via shape complementarity rather than base-specific interactions, permitting substrate diversity. The engineered DRM2 C397R mutation introduces base-specific contacts with the +2-flanking guanine, thereby shifting the substrate specificity of DRM2 toward CHG DNA. Together, this study uncovers DNA deformation as a mechanism in regulating the specificity of DRM2 toward diverse CHH substrates and illustrates methylome complexity in plants.


2021 ◽  
Author(s):  
Adam Osinski ◽  
Miles Black ◽  
Krzysztof Pawlowski ◽  
Zhe Chen ◽  
Yang Li ◽  
...  

The kinase domain transfers phosphate from ATP to substrates. However, the Legionella effector SidJ adopts a kinase fold yet catalyzes calmodulin (CaM)-dependent glutamylation to inactivate the SidE ubiquitin ligases. The structural and mechanistic basis in which the kinase domain catalyzes protein glutamylation is unknown. Here we present cryo-EM reconstructions of SidJ:CaM:SidE reaction intermediate complexes. We show that the kinase-like active site of SidJ adenylates an active site Glu in SidE resulting in the formation of a stable reaction intermediate complex. An insertion in the catalytic loop of the kinase domain positions the donor Glu near the acyl-adenylate for peptide bond formation. Our structural analysis led us to discover that the SidJ paralog SdjA is a glutamylase that differentially regulates the SidE-ligases during Legionella infection. Our results uncover the structural and mechanistic basis in which the kinase fold catalyzes non-ribosomal amino acid ligations and reveal an unappreciated level of SidE-family regulation.


Author(s):  
Yuya Shimozawa ◽  
Tomoki Himiyama ◽  
Tsutomu Nakamura ◽  
Yoshiaki Nishiya

Abstract Malate dehydrogenase (MDH) catalyzes the reversible reduction of oxaloacetate (OAA) to L-malate using nicotinamide adenine dinucleotide hydrogen. MDH has two characteristic loops, the mobile loop and the catalytic loop, in the active site. On binding to the substrate, the enzyme undergoes a structural change from the open-form, with an open conformation of the mobile loop, to the closed-form, with the loop in a closed conformation. In this study, three crystals of MDH from a moderate thermophile, Geobacillus stearothermophilus (gs-MDH) were used to determine four different enzyme structures (resolutions, 1.95–2.20 Å), each of which was correspondingly assigned to its four catalytic states. Two OAA-unbound structures exhibited the open-form, while the other two OAA-bound structures exhibited both the open- and closed-form. The structural analysis suggested that the binding of OAA to the open-form gs-MDH promotes conformational change in the mobile loop and simultaneously activates the catalytic loop. The mutations on the key amino acid residues involving the proposed catalytic mechanism significantly affected the gs-MDH activity, supporting our hypothesis. These findings contribute to the elucidation of the detailed molecular mechanism underlying the substrate recognition and structural switching during the MDH catalytic cycle.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maximilian M. Biebl ◽  
Abraham Lopez ◽  
Alexandra Rehn ◽  
Lee Freiburger ◽  
Jannis Lawatscheck ◽  
...  

AbstractThe co-chaperone p23 is a central part of the Hsp90 machinery. It stabilizes the closed conformation of Hsp90, inhibits its ATPase and is important for client maturation. Yet, how this is achieved has remained enigmatic. Here, we show that a tryptophan residue in the proximal region of the tail decelerates the ATPase by allosterically switching the conformation of the catalytic loop in Hsp90. We further show by NMR spectroscopy that the tail interacts with the Hsp90 client binding site via a conserved helix. This helical motif in the p23 tail also binds to the client protein glucocorticoid receptor (GR) in the free and Hsp90-bound form. In vivo experiments confirm the physiological importance of ATPase modulation and the role of the evolutionary conserved helical motif for GR activation in the cellular context.


Author(s):  
Jakub Barciszewski ◽  
Kamil Szpotkowski ◽  
Janusz Wisniewski ◽  
Robert Kolodziejczyk ◽  
Dariusz Rakus ◽  
...  

Muscle fructose-1,6-bisphosphatase (FBPase), which catalyzes the hydrolysis of fructose-1,6-bisphosphate (F1,6BP) to fructose-6-phosphate (F6P) and inorganic phosphate, regulates glucose homeostasis by controlling the glyconeogenic pathway. FBPase requires divalent cations, such as Mg2+, Mn2+, or Zn2+, for its catalytic activity; however, calcium ions inhibit the muscle isoform of FBPase by interrupting the movement of the catalytic loop. It has been shown that residue E69 in this loop plays a key role in the sensitivity of muscle FBPase towards calcium ions. The study presented here is based on five crystal structures of wild-type human muscle FBPase and its E69Q mutant in complexes with the substrate and product of the enzymatic reaction, namely F1,6BP and F6P. The ligands are bound in the active site of the studied proteins in the same manner and have excellent definition in the electron density maps. In all studied crystals, the homotetrameric enzyme assumes the same cruciform quaternary structure, with the κ angle, which describes the orientation of the upper dimer with respect to the lower dimer, of –85o. This unusual quaternary arrangement of the subunits, characteristic of the R-state of muscle FBPase, is also observed in solution by small-angle X-ray scattering (SAXS).


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3100 ◽  
Author(s):  
Hannah Rosenbach ◽  
Julian Victor ◽  
Manuel Etzkorn ◽  
Gerhard Steger ◽  
Detlev Riesner ◽  
...  

Deoxyribozymes (DNAzymes) with RNA hydrolysis activity have a tremendous potential as gene suppression agents for therapeutic applications. The most extensively studied representative is the 10-23 DNAzyme consisting of a catalytic loop and two substrate binding arms that can be designed to bind and cleave the RNA sequence of interest. The RNA substrate is cleaved between central purine and pyrimidine nucleotides. The activity of this DNAzyme in vitro is considerably higher than in vivo, which was suggested to be related to its divalent cation dependency. Understanding the mechanism of DNAzyme catalysis is hindered by the absence of structural information. Numerous biological studies, however, provide comprehensive insights into the role of particular deoxynucleotides and functional groups in DNAzymes. Here we provide an overview of the thermodynamic properties, the impact of nucleobase modifications within the catalytic loop, and the role of different metal ions in catalysis. We point out features that will be helpful in developing novel strategies for structure determination and to understand the mechanism of the 10-23 DNAzyme. Consideration of these features will enable to develop improved strategies for structure determination and to understand the mechanism of the 10-23 DNAzyme. These insights provide the basis for improving activity in cells and pave the way for developing DNAzyme applications.


2020 ◽  
Author(s):  
Deborah Harrus ◽  
Anne Harduin-Lepers ◽  
Tuomo Glumoff

ABSTRACTSialic acid residues found as terminal monosaccharides in various types of glycan chains in cell surface glycoproteins and glycolipids have been identified as important contributors of cell-cell interactions in normal vs. abnormal cellular behavior and are pivotal in diseases such as cancers. In vertebrates, sialic acids are attached to glycan chains by a conserved subset of sialyltransferases with different enzymatic and substrate specificities. ST6Gal I is a sialyltransferase using activated CMP-sialic acids as donor substrates to catalyze the formation of a α2,6-glycosidic bond between the sialic acid residue and the acceptor disaccharide LacNAc. Understanding sialyltransferases at the molecular and structural level shed light into the function. We present here two human ST6Gal I structures, which show for the first time the enzyme in the unliganded state and with the full donor substrate CMP-Neu5Ac bound. Comparison of these structures reveal flexibility of the catalytic loop, since in the unliganded structure Tyr354 adopts a conformation seen also as an alternate conformation in the substrate bound structure. CMP-Neu5Ac is bound with the side chain at C-5 of the sugar residue directed towards empty space at the surface of the protein. Furthermore, the exact binding mode of the sialic acid moiety of the substrate directly involves sialylmotifs L, S and III and positions the sialylmotif VS in the immediate vicinity.PROTEIN DATA BANK ACCESSION CODESAtomic coordinates and structure factors of the human wild-type unliganded and CMP-Neu5Ac bound ST6Gal I have been deposited with the PDB with accession codes 6QVS and 6QVT, respectively.


2020 ◽  
Author(s):  
Linfeng Gao ◽  
Max Emperle ◽  
Yiran Guo ◽  
Sara A Grimm ◽  
Wendan Ren ◽  
...  

AbstractMammalian DNA methylation patterns are established by two de novo DNA methyltransferases DNMT3A and DNMT3B, which exhibit both redundant and distinctive methylation activities. However, the related molecular basis remains undetermined. Through comprehensive structural, enzymology and cellular characterization of DNMT3A and DNMT3B, we here report a multi-layered substrate-recognition mechanism underpinning their divergent genomic methylation activities. A hydrogen bond in the catalytic loop of DNMT3B causes a lower CpG specificity than DNMT3A, while the interplay of target recognition domain and homodimeric interface fine-tunes the distinct target selection between the two enzymes, with Lysine 777 of DNMT3B acting as a unique sensor of the +1 flanking base. The divergent substrate preference between DNMT3A and DNMT3B provides an explanation for site-specific epigenomic alterations seen in ICF syndrome with DNMT3B mutations. Together, this study reveals crucial and distinctive substrate-readout mechanisms of the two DNMT3 enzymes, implicative of their differential roles during development and pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document