The Eukaryotic Initiation Factor 5A Is Involved in the Regulation of Proliferation and Apoptosis Induced by Interferon-  and EGF in Human Cancer Cells

2003 ◽  
Vol 133 (6) ◽  
pp. 757-765 ◽  
Author(s):  
M. Caraglia
Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 411 ◽  
Author(s):  
Hiroko Kozuka-Hata ◽  
Aya Kitamura ◽  
Tomoko Hiroki ◽  
Aiko Aizawa ◽  
Kouhei Tsumoto ◽  
...  

Post-translational modifications are known to be widely involved in the regulation of various biological processes, through the extensive diversification of each protein function at the cellular network level. In order to unveil the system-wide function of the protein lysine modification in cancer cell signaling, we performed global acetylation and ubiquitination proteome analyses of human cancer cells, based on high-resolution nanoflow liquid chromatography–tandem mass spectrometry, in combination with the efficient biochemical enrichment of target modified peptides. Our large-scale proteomic analysis enabled us to identify more than 5000 kinds of ubiquitinated sites and 1600 kinds of acetylated sites, from representative human cancer cell lines, leading to the identification of approximately 900 novel lysine modification sites in total. Very interestingly, 236 lysine residues derived from 141 proteins were found to be modified with both ubiquitination and acetylation. As a consequence of the subsequent motif extraction analyses, glutamic acid (E) was found to be highly enriched at the position (−1) for the lysine acetylation sites, whereas the same amino acid was relatively dispersed along the neighboring residues of the lysine ubiquitination sites. Our pathway analysis also indicated that the protein translational control pathways, such as the eukaryotic initiation factor 2 (EIF2) and the ubiquitin signaling pathways, were highly enriched in both of the acetylation and ubiquitination proteome data at the network level. This report provides the first integrative description of the protein acetylation and ubiquitination-oriented systematic regulation in human cancer cells.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
S Nam ◽  
R Buettner ◽  
X Liu ◽  
J Turkson ◽  
D Kim ◽  
...  

2010 ◽  
Vol 39 (3) ◽  
pp. 325-330 ◽  
Author(s):  
Hyun-Young Kim ◽  
In-Guk Hwang ◽  
Eun-Mi Joung ◽  
Tae-Myoung Kim ◽  
Dae-Joong Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document