Interaction of Inherited Sterility and Insecticide Resistance in the Fall Armyworm (Lepidoptera: Noctuidae)

1991 ◽  
Vol 84 (1) ◽  
pp. 25-27 ◽  
Author(s):  
J. E. Carpenter ◽  
J. R. Young
1997 ◽  
Vol 32 (2) ◽  
pp. 148-153 ◽  
Author(s):  
J. J. Hamm ◽  
J. E. Carpenter

Inherited sterility has been proposed as a means of suppressing the populations of the corn earworm, Helicoverpa zea (Boddie), and the fall armyworm, Spodoptera frugiperda (J. E. Smith). If nuclear polyhedrosis viruses could be used to kill larvae, thereby reducing the number of moths in the field populations, fewer moths treated with substerilizing doses of irradiation would need to be released. However, for these two methods to be compatible, the progeny of substerile moths should be no more susceptible to the virus than the progeny of the field populations. The corn earworm nuclear polyhedrosis virus (Elcar™) was bioassayed against corn earworm larvae from untreated moths and larvae from male, female, and male and female moths treated with 100 Gy of irradiation and larvae from male moths treated with 150 Gy of irradiation. The fall armyworm nuclear polyhedrosis virus was bioassayed against fall armyworm larvae from untreated moths and larvae from male moths treated with 100 to 150 Gy of irradiation. There was no significant difference between susceptibility of larvae from untreated moths and larvae from irradiated moths. Thus, the use of nuclear polyhedrosis viruses for control of larvae should be compatible with the release of substerilized moths as part of an integrated pest management approach for area-wide management of the corn earworm and fall armyworm.


2021 ◽  
Vol 20 (3) ◽  
pp. 783-791 ◽  
Author(s):  
Dan-dan ZHANG ◽  
Yu-tao XIAO ◽  
Peng-jun XU ◽  
Xian-ming YANG ◽  
Qiu-lin WU ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1074
Author(s):  
Bonoukpoè Mawuko Sokame ◽  
Boaz Musyoka ◽  
Julius Obonyo ◽  
François Rebaudo ◽  
Elfatih M. Abdel-Rahman ◽  
...  

The interactions among insect communities influence the composition of pest complexes that attack crops and, in parallel, their natural enemies, which regulate their abundance. The lepidopteran stemborers have been the major maize pests in Kenya. Their population has been regulated by natural enemies, mostly parasitoids, some of which have been used for biological control. It is not known how a new exotic invasive species, such as the fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera, Noctuidae), may affect the abundance and parasitism of the resident stemborers. For this reason, pest and parasitism surveys have been conducted, before and after the FAW invaded Kenya, in maize fields in 40 localities across 6 agroecological zones (AEZs) during the maize-growing season, as well as at 3 different plant growth stages (pre-tasseling, reproductive, and senescence stages) in 2 elevations at mid-altitude, where all maize stemborer species used to occur together. Results indicated that the introduction of the FAW significantly correlated with the reduction of the abundance of the resident communities of maize stemborers and parasitoids in maize fields; moreover, the decrease of stemborer density after the arrival of FAW occurred mostly at both reproductive and senescent maize stages. It also suggests a possible displacement of stemborers by FAW elsewhere; for example, to other cereals. However, since this study was conducted only three years after the introduction of the FAW, further studies will need to be conducted to confirm such displacements.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Sharanabasappa S. Deshmukh ◽  
S. Kiran ◽  
Atanu Naskar ◽  
Palam Pradeep ◽  
C. M. Kalleshwaraswamy ◽  
...  

AbstractThe fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), has become a major threat in maize cultivation since its invasion to India in 2018. The humpbacked fly, Megaselia scalaris (Loew) (Diptera: Phoridae), was recorded as a laboratory parasitoid of FAW, for the first time in India. Initially, 30–40 maggots of M. (M) scalaris emerged out from the dead pre-pupa and pupa of laboratory-reared FAW. The fly laid up to 15 eggs on the outer surface of 6th instar larva or pre-pupa of the FAW. The incubation period was 1–2 days. The fly had 3 larval instars which lasted 3–4 days and a pupal period of 10–11 days. The adults survived for 6–7 days.


2006 ◽  
Vol 35 (2) ◽  
pp. 561-568 ◽  
Author(s):  
Rod N. Nagoshi ◽  
Robert L. Meagher ◽  
Gregg Nuessly ◽  
David G. Hall

2015 ◽  
Vol 108 (5) ◽  
pp. 729-735 ◽  
Author(s):  
Mirian M. Hay-Roe ◽  
Rodney N. Nagoshi ◽  
Robert L. Meagher ◽  
Myriam Arias De Lopez ◽  
Rogelio Trabanino

Sign in / Sign up

Export Citation Format

Share Document