Flight Phenology of Two Coptotermes Species (Isoptera: Rhinotermitidae) in Southeastern Florida

2017 ◽  
Vol 110 (4) ◽  
pp. 1693-1704 ◽  
Author(s):  
Thomas Chouvenc ◽  
Rudolf H. Scheffrahn ◽  
Aaron J. Mullins ◽  
Nan-Yao Su
Keyword(s):  



2021 ◽  
Vol 118 (40) ◽  
pp. e2106006118
Author(s):  
Thomas Merckx ◽  
Matthew E. Nielsen ◽  
Janne Heliölä ◽  
Mikko Kuussaari ◽  
Lars B. Pettersson ◽  
...  

Urbanization is gaining force globally, which challenges biodiversity, and it has recently also emerged as an agent of evolutionary change. Seasonal phenology and life cycle regulation are essential processes that urbanization is likely to alter through both the urban heat island effect (UHI) and artificial light at night (ALAN). However, how UHI and ALAN affect the evolution of seasonal adaptations has received little attention. Here, we test for the urban evolution of seasonal life-history plasticity, specifically changes in the photoperiodic induction of diapause in two lepidopterans, Pieris napi (Pieridae) and Chiasmia clathrata (Geometridae). We used long-term data from standardized monitoring and citizen science observation schemes to compare yearly phenological flight curves in six cities in Finland and Sweden to those of adjacent rural populations. This analysis showed for both species that flight seasons are longer and end later in most cities, suggesting a difference in the timing of diapause induction. Then, we used common garden experiments to test whether the evolution of the photoperiodic reaction norm for diapause could explain these phenological changes for a subset of these cities. These experiments demonstrated a genetic shift for both species in urban areas toward a lower daylength threshold for direct development, consistent with predictions based on the UHI but not ALAN. The correspondence of this genetic change to the results of our larger-scale observational analysis of in situ flight phenology indicates that it may be widespread. These findings suggest that seasonal life cycle regulation evolves in urban ectotherms and may contribute to ecoevolutionary dynamics in cities.



2020 ◽  
Vol 49 (5) ◽  
pp. 1077-1087
Author(s):  
Claudia D Lyons-Yerion ◽  
James D Barbour ◽  
Judith A Mongold-Diers ◽  
Christopher J Williams ◽  
Stephen P Cook

Abstract Research over the last 15 yr has shown widespread pheromone parsimony within the coleopteran family Cerambycidae, with a number of highly conserved pheromone motifs, often shared within and across subfamilies, tribes, and genera. Our goals were to increase our understanding of the evolution of volatile pheromones within the Cerambycidae, their role in reproductive isolation and to identify pheromones for use in the development of lures for monitoring cerambycids. Over 3 yr, we tested 12 compounds known to be cerambycid pheromones as possible attractants at sites across Idaho. This study focused on species within the cerambycine genus Phymatodes (Tribe: Callidiini). We also collected and analyzed headspace volatiles of captured Phymatodes dimidiatus (Kirby). Our results demonstrate that (R)-2-methylbutan-1-ol is a male-produced volatile pheromone for P. dimidiatus. These results are consistent with prior research suggesting that (R)-2-methylbutan-1-ol and (R)-3-hydroxyhexan-2-one, individually or in a blend of both compounds, commonly serve as pheromones for Phymatodes spp. We captured Phymatodes starting in mid-May, continuing through mid-August. Our data indicate that flight periods of Phymatodes spp. in Idaho overlap. These species may be utilizing various mechanisms to ensure reproductive isolation, such as the production of different volatile pheromones, minor components, and/or proportions of components, utilizing different host species and/or host volatiles, differing daily activity periods, and/or occupying different heights in the tree canopy. Our results contribute to the basic understanding of the chemical and behavioral ecology of the Cerambycidae and can be applied to the development of pheromone lures for monitoring of economically important or endangered species.





2010 ◽  
Vol 101 (2) ◽  
pp. 127-133 ◽  
Author(s):  
G. Thöming ◽  
H. Saucke

AbstractThe hypothesis that spring emergence of the pea moth Cydia nigricana is regulated by environmental factors, particularly photoperiod and temperature, was examined in this study. A long-term field study was conducted in two distinct pea-growing areas in Hesse and Saxony, Germany. Strong correlations between the flight phenology of pea moth in spring and air temperature, soil temperature, solar radiation and day length were demonstrated for three consecutive years. In laboratory experiments, we elucidated the interaction of different photoperiod-temperature regimes, verifying cumulative day-degree data in relation to pea moth emergence rates in the field. C. nigricana temperature sensitivity is apparently initiated by long day conditions with a critical day length of about 14 h L:D. The overall results contribute to the theory that photoperiod and temperature interact as regulatory cues for spring emergence of C. nigricana. The findings are discussed in terms of the development of predictive models and decision support systems for pea moth control.



2019 ◽  
Vol 151 (3) ◽  
pp. 378-390 ◽  
Author(s):  
Phanie Bonneau ◽  
Jean Denis Brisson ◽  
Stéphanie Tellier ◽  
Valérie Fournier

AbstractStrawberry decline disease, predominantly viral in origin, was a serious threat to the strawberry (Fragaria x ananassaDuchesne ex Rozier; Rosaceae) fields of Québec, Canada, between 2012 and 2014. Our aim was to monitor the abundance and activity of the main insect vectors: the strawberry aphid,Chaetosiphon fragaefolii(Cockerell) (Hemiptera: Aphididae) and the greenhouse whitefly,Trialeurodes vaporariorumWestwood (Hemiptera: Aleyrodidae). First, we compared the effectiveness of two trapping techniques, the yellow sticky trap and the yellow pan trap. Results showed that the sticky traps are more effective in capturing alates in flight. Second, we determined the peak flight period for each of the two vectors in several locations within the province of Québec. Results suggest that the peak abundance of wingedC. fragaefoliiis during the first two weeks of August, while the peak abundance ofT. vaporariorumis in the last two weeks of September. Overall trap captures also found 53 different species of winged aphids, and we documented a new distribution record on commercial strawberry fields in Québec,Aleyrodes spiraeoides(Quaintance) (Hemiptera: Aleyrodidae). Species composition and significant information of flight periods will be useful for the management of virus-transmitting insects associated with strawberry decline disease in Québec.



2014 ◽  
Vol 104 (5) ◽  
pp. 566-575 ◽  
Author(s):  
V. Ortega-López ◽  
M. Amo-Salas ◽  
A. Ortiz-Barredo ◽  
A.M. Díez-Navajas

AbstractLobesia botrana is the most significant pest of grape berries in Spain. Further knowledge of its phenology would enable wine growers to decide on an optimal treatment schedule. The aim of this study is, therefore, to predict the flight peaks of L. botrana in seven wine-growing regions of Spain. The main goal is to provide a prediction model based on meteorological data records. A logistic function model, based on temperature and humidity records, together with an exhaustive statistical analysis, were used to compare the wine-growing regions in which the male flight phenology of L. botrana displays similar patterns and to sort them into groups. By doing so, a joint study of the dynamics of the moth is possible in the regions within each group. A comparison of the prediction errors before and after applying the Touzeau model confirmed that the fit of the latter model is not sufficiently accurate for the regions under study. Moth flight predictions with the logistic function model are good, but accuracy may still be improved by evaluating other non-biotic and biotic factors.



1998 ◽  
Vol 27 (3) ◽  
pp. 606-614 ◽  
Author(s):  
Christine M. Gaasch ◽  
John Pickering ◽  
Clinton T. Moore


Sign in / Sign up

Export Citation Format

Share Document