headspace volatiles
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 29)

H-INDEX

29
(FIVE YEARS 1)

2021 ◽  
Vol 8 (03) ◽  
pp. e153-e160
Author(s):  
Maria Isabel Galbiatti ◽  
Guilherme Perez Pinheiro ◽  
Elisa Ribeiro Miranda Antunes ◽  
Vinicius Verri Hernandes ◽  
Alexandra Christine Helena Frankland Sawaya

Abstract Plectranthus neochilus Schltr. is an aromatic species, commonly used for digestive, antispasmodic, and analgesic purposes. Although many studies have reported the chemical composition of its essential oil, variations in the volatile profile were observed, which may be due to multiple factors linked to growth and field conditions. In order to detect metabolic variations in this species, we employed a GC-MS-based untargeted metabolomics approach analyzing samples of four P. neochilus individuals collected over a year. From all analyses, 24 mass features were detected and 21 were identified according to their respective chromatographic peaks. All features varied among samples, particularly (2E)-hexenal, 3-octanone and δ-3-carene, which showed the highest coefficient of variation percentage in our study. Although the four individuals presented the same peaks in the chromatograms, significant differences in the intensity of specific mass features were detected between individuals throughout the year. Time of sampling did not affect P. neochilus volatile composition; the chemical profile remained constant throughout the day. Seasonal trends were observed for the species. Winter months coincided with a drop in the intensity of most components. Air temperature showed a positive correlation with some feature intensities, while myrcene and α-thujene resulted in a positive and a negative correlation with rainfall, respectively. This study was the first attempt to correlate metabolic variation and environmental factors in P. neochilus. Our approach was successful in identifying the composition and variation of the headspace volatiles of P. neochilus leaves.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7256
Author(s):  
Xueqin Wang ◽  
Yanyan Wu ◽  
Huanhuan Zhu ◽  
Hongyan Zhang ◽  
Juan Xu ◽  
...  

Prunus mume is a traditional ornamental plant, which owed a unique floral scent. However, the diversity of the floral scent in P. mume cultivars with different aroma types was not identified. In this study, the floral scent of eight P. mume cultivars was studied using headspace solid-phase microextraction (HS-SPME) and organic solvent extraction (OSE), combined with gas chromatography-mass spectrometry (GC-MS). In total, 66 headspace volatiles and 74 endogenous extracts were putatively identified, of which phenylpropanoids/benzenoids were the main volatile organic compounds categories. As a result of GC-MS analysis, benzyl acetate (1.55–61.26%), eugenol (0.87–6.03%), benzaldehyde (5.34–46.46%), benzyl alcohol (5.13–57.13%), chavicol (0–5.46%), and cinnamyl alcohol (0–6.49%) were considered to be the main components in most varieties. However, the volatilization rate of these main components was different. Based on the variable importance in projection (VIP) values in the orthogonal partial least-squares discriminate analysis (OPLS-DA), differential components of four aroma types were identified as biomarkers, and 10 volatile and 12 endogenous biomarkers were screened out, respectively. The odor activity value (OAV) revealed that several biomarkers, including (Z)-2-hexen-1-ol, pentyl acetate, (E)-cinnamaldehyde, methyl salicylate, cinnamyl alcohol, and benzoyl cyanide, contributed greatly to the strong-scented, fresh-scented, sweet-scented, and light-scented types of P. mume cultivars. This study provided a theoretical basis for the floral scent evaluation and breeding of P. mume cultivars.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaofang Zhang ◽  
Liuyang Wang ◽  
Chunqin Liu ◽  
Yongqiang Liu ◽  
Xiangdong Mei ◽  
...  

AbstractThe white-spotted flower chafer (WSFC), Protaetia brevitarsis Lewis, is native to East Asia. Although their larvae are considered a potential resource insect for degrading plant residues, producing protein fodder, and processing to traditional medicine, adult WSFCs inflict damage to dozens of fruit and economic crops. The control of the WSFC still relies heavily on pesticides and the inefficient manual extraction of adults. Here, we report the identification and evaluation of the aggregation pheromone of WSFCs. From the headspace volatiles emitted from WSFC adults, anisole, 4-methylanisole, 2-heptanone and 2-nonanone were identified as WSFC-specific components. However, only anisole and 4-methylanisole elicited positive dose–response relationship in electroantennography tests, and only 4-methylanisole significantly attracted WSFCs of both sexes in olfactometer bioassays and field experiments. These results concluded that 4-methylanisole is the aggregation pheromone of WSFCs. Furthermore, we developed polyethylene vials as long-term dispensers of 4-methylanisole to attract and kill WSFCs. The polyethylene vial lures could effectively attracted WSFCs for more than four weeks. Pheromone-based lures can be developed as an environmentally friendly protocol for monitoring and controlling WSFC adults.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 899
Author(s):  
Zoltán Imrei ◽  
Michael J. Domingue ◽  
Zsófia Lohonyai ◽  
Jardel A. Moreira ◽  
Éva Bálintné Csonka ◽  
...  

(1) Background: The principal aim of our work was to identify pheromone components for Plagionotus detritus (L.) (Coleoptera: Cerambycidae), which could be exploited for developing a pheromone-based monitoring system for the complementary purposes of plant protection in areas where it might become a pest, and natural conservation in areas where it is rare or endangered. (2) Methods: Collection and analysis of headspace volatiles were carried out with field-collected beetles. Bioactive volatile compounds identified [(R)-3-hydroxyhexan-2-one and (S)-2-hydroxyoctan-3-one] from extracts of males were purchased [(±)-3-hydroxyhexan-2-one], and synthesized [(S)-2-hydroxyoctan-3-one] and field-tested. Electroantennogram assays showed that antennae of the predatory beetle Clerus mutillarius F. (Coleoptera: Cleridae) also responded to the synthetic compounds. (3) Results: A two-component aggregation-sex pheromone consisting of (R)-3-hydroxyhexan-2-one and (S)-2-hydroxyoctan-3-one was identified for P. detritus. (±)-3-hydroxyhexan-2-one and (S)-2-hydroxyoctan-3-one attracted adults of P. detritus in field bioassays. Adults of the clerid C. mutillarius also were attracted to both compounds. The cerambycid Xylotrechus antilope Schönh was significantly attracted to traps baited with (S)-2-hydroxyoctan-3-one alone or the blend containing this compound. (4) Conclusions: Our data confirmed that 3-hydroxyhexan-2-one and 2-hydroxyoctan-3-one are male-produced pheromone components for P. detritus. These results show that both intraspecific and interspecific communication may play key roles in longhorn beetle life history and ecology, with closely and more distantly related species eavesdropping on each other’s signals.


2021 ◽  
Author(s):  
Yi-Han Xia ◽  
Bao-Jian Ding ◽  
Shuanglin Dong ◽  
Hong-Lei Wang ◽  
Per Hofvander ◽  
...  

Using genetically modified plants as natural dispensers of insect pheromones may eventually become part of a novel strategy for integrated pest management. In the present study, we first characterized essential functional genes for sex pheromone biosynthesis in the rice stem borer Chilo suppressalis (Walker) by heterologous expression in Saccharomyces cerevisiae and Nicotiana benthamiana, including two desaturase genes CsupYPAQ and CsupKPSE, and a reductase gene CsupFAR2. Subsequently, we co-expressed CsupYPAQ and CsupFAR2 together with the previously characterized moth desaturase AtrΔ11 in N. benthamiana. This resulted in the production of (Z)-11-hexadecenol together with (Z)-11-hexadecenal, the major pheromone component of C. suppressalis. Both compounds were collected from the transformed N. benthamiana headspace volatiles using solid phase microextraction. We finally added the expression of a yeast acetyltransferase gene ATF1 and could then confirm also (Z)-11-hexadecenyl acetate release from the plant. Our results pave the way for stable transformation of plants to be used as biological pheromone sources in different pest control strategies.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5024
Author(s):  
Sally Noushini ◽  
Soo Jean Park ◽  
Jeanneth Perez ◽  
Danielle Holgate ◽  
Vivian Mendez ◽  
...  

Pheromones are biologically important in fruit fly mating systems, and also have potential applications as attractants or mating disrupters for pest management. Bactrocera kraussi (Hardy) (Diptera: Tephritidae) is a polyphagous pest fruit fly for which the chemical profile of rectal glands is available for males but not for females. There have been no studies of the volatile emissions of either sex or of electrophysiological responses to these compounds. The present study (i) establishes the chemical profiles of rectal gland contents and volatiles emitted by both sexes of B. kraussi by gas chromatography–mass spectrometry (GC–MS) and (ii) evaluates the detection of the identified compounds by gas chromatography–electroantennogram detection (GC–EAD) and –electropalpogram detection (GC–EPD). Sixteen compounds are identified in the rectal glands of male B. kraussi and 29 compounds are identified in the rectal glands of females. Of these compounds, 5 were detected in the headspace of males and 13 were detected in the headspace of females. GC–EPD assays recorded strong signals in both sexes against (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, 2-ethyl-7-mehtyl-1,6-dioxaspiro[4.5]decane isomer 2, (E,Z)/(Z,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, and (Z,Z)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane. Male antennae responded to (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, 2-methyl-6-pentyl-3,4-dihydro-2H-pyran, 6-hexyl-2-methyl-3,4-dihydro-2H-pyran, 6-oxononan-1-ol, ethyl dodecanoate, ethyl tetradecanoate and ethyl (Z)-hexadec-9-enoate, whereas female antennae responded to (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane and 2-methyl-6-pentyl-3,4-dihydro-2H-pyran only. These compounds are candidates as pheromones mediating sexual interactions in B. kraussi.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 871
Author(s):  
Bethelihem Mekonnen ◽  
Xavier Cheseto ◽  
Christian Pirk ◽  
Abdullahi Yusuf ◽  
Sunday Ekesi ◽  
...  

The African weaver ant, Oecophylla longinoda, is used as a biological control agent for the management of pests. The ant has several exocrine glands in the abdomen, including Dufour’s, poison, rectal, and sternal glands, which are associated with pheromone secretions for intra-specific communication. Previous studies have analyzed the gland secretions of Dufour’s and poison glands. The chemistry of the rectal and sternal glands is unknown. We re-analyzed the secretions from Dufour’s and poison glands plus the rectal and sternal glands to compare their chemistries and identify additional components. We used the solid-phase microextraction (SPME) technique to collect gland headspace volatiles and solvent extraction for the secretions. Coupled gas chromatography–mass spectrometry (GC-MS) analysis detected a total of 78 components, of which 62 were being reported for the first time. These additional components included 32 hydrocarbons, 12 carboxylic acids, 5 aldehydes, 3 alcohols, 2 ketones, 4 terpenes, 3 sterols, and 1 benzenoid. The chemistry of Dufour’s and poison glands showed a strong overlap and was distinct from that of the rectal and sternal glands. The different gland mixtures may contribute to the different physiological and behavioral functions in this ant species.


2021 ◽  
Vol 11 ◽  
Author(s):  
Elisabeth J. Eilers ◽  
Sandra Kleine ◽  
Silvia Eckert ◽  
Simon Waldherr ◽  
Caroline Müller

Floral volatiles and reward traits are major drivers for the behavior of mutualistic as well as antagonistic flower visitors, i.e., pollinators and florivores. These floral traits differ tremendously between species, but intraspecific differences and their consequences on organism interactions remain largely unknown. Floral volatile compounds, such as terpenoids, function as cues to advertise rewards to pollinators, but should at the same time also repel florivores. The reward composition, e.g., protein and lipid contents in pollen, differs between individuals of distinct plant families. Whether the nutritional value of rewards within the same plant species is linked to their chemotypes, which differ in their pattern of specialized metabolites, has yet not been investigated. In the present study, we compared Tanacetum vulgare plants of five terpenoid chemotypes with regard to flower production, floral headspace volatiles, pollen macronutrient and terpenoid content, and floral attractiveness to florivorous beetles. Our analyses revealed remarkable differences between the chemotypes in the amount and diameter of flower heads, duration of bloom period, and pollen nutritional quality. The floral headspace composition of pollen-producing mature flowers, but not of premature flowers, was correlated to that of pollen and leaves in the same plant individual. For two chemotypes, florivorous beetles discriminated between the scent of mature and premature flower heads and preferred the latter. In semi-field experiments, the abundance of florivorous beetles and flower tissue miners differed between T. vulgare chemotypes. Moreover, the scent environment affected the choice and beetles were more abundant in homogenous plots composed of one single chemotype than in plots with different neighboring chemotypes. In conclusion, flower production, floral metabolic composition and pollen quality varied to a remarkable extend within the species T. vulgare, and the attractiveness of floral scent differed also intra-individually with floral ontogeny. We found evidence for a trade-off between pollen lipid content and pollen amount on a per-plant-level. Our study highlights that chemotypes which are more susceptible to florivory are less attacked when they grow in the neighborhood of other chemotypes and thus gain a benefit from high overall chemodiversity.


Sign in / Sign up

Export Citation Format

Share Document