scholarly journals Application of an improved particle filter for random seismic noise suppression

2021 ◽  
Vol 18 (6) ◽  
pp. 943-953
Author(s):  
Jingquan Zhang ◽  
Dian Wang ◽  
Peng Li ◽  
Shiyu Liu ◽  
Han Yu ◽  
...  

Abstract Random noise is inevitable during seismic prospecting. Seismic signals, which are variable in time and space, are damaged by conventional random noise suppression methods, and this limits the accuracy in seismic data imaging. In this paper, an improved particle filtering strategy based on the firefly algorithm is proposed to suppress seismic noise. To address particle degradation problems during the particle filter resampling process, this method introduces a firefly algorithm that moves the particles distributed at the tail of the probability to the high-likelihood area, thereby improving the particle quality and performance of the algorithm. Finally, this method allows the particles to carry adequate seismic information, thereby enhancing the accuracy of the estimation. Synthetic and field experiments indicate that this method can effectively suppress random seismic noise.

Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. V79-V86 ◽  
Author(s):  
Hakan Karsli ◽  
Derman Dondurur ◽  
Günay Çifçi

Time-dependent amplitude and phase information of stacked seismic data are processed independently using complex trace analysis in order to facilitate interpretation by improving resolution and decreasing random noise. We represent seismic traces using their envelopes and instantaneous phases obtained by the Hilbert transform. The proposed method reduces the amplitudes of the low-frequency components of the envelope, while preserving the phase information. Several tests are performed in order to investigate the behavior of the present method for resolution improvement and noise suppression. Applications on both 1D and 2D synthetic data show that the method is capable of reducing the amplitudes and temporal widths of the side lobes of the input wavelets, and hence, the spectral bandwidth of the input seismic data is enhanced, resulting in an improvement in the signal-to-noise ratio. The bright-spot anomalies observed on the stacked sections become clearer because the output seismic traces have a simplified appearance allowing an easier data interpretation. We recommend applying this simple signal processing for signal enhancement prior to interpretation, especially for single channel and low-fold seismic data.


Geophysics ◽  
2021 ◽  
pp. 1-79 ◽  
Author(s):  
Hang Wang ◽  
Wei Chen ◽  
Weilin Huang ◽  
Shaohuan Zu ◽  
Xingye Liu ◽  
...  

Predictive filtering in the frequency domain is one of the most widely used denoising algorithms in the seismic data processing workflow. Predictive filtering is based on the assumption of linear/planar events in the time-space domain. In traditional predictive filtering method, the predictive filter is fixed across the spatial dimension, which cannot deal with the spatial variation of seismic data well. To handle the curving events, the predictive filter is either applied in local windows or extended to a non-stationary version. The regularized non-stationary autoregression (RNAR) method can be treated as a non-stationary extension of the traditional predictive filtering, where the predictive filter coefficients are variable in different space locations. The highly under-determined inverse problem is solved by shaping regularization with a smoothness constraint in space. We further extend the RNAR method to a more general case, where we can apply more constraints to the filter coefficients according to the features of seismic data. First, apart from the smoothness in space, we also apply a smoothing constraint in frequency, considering the coherency of the coefficients in the frequency dimension. Secondly, we apply a frequency dependent smoothing radius along the space dimension to better take advantage of the non-stationarity of seismic data in the frequency axis, and to better deal with noise. The proposed method is validated via several synthetic and field data examples.


Geophysics ◽  
2021 ◽  
pp. 1-35
Author(s):  
Siming He ◽  
Jian Guan ◽  
Yi Wang ◽  
Xiu Ji ◽  
Hui Wang

In electrical exploration techniques, an effective suppression method for Gaussian and impulsive random noise in spread spectrum induced polarization (SSIP) continues to be challenging for conventional denoising methods. Remnant noise influences the complex resistivity spectrum and damages the subsequent interpretation of geophysical surveys. We present a hybrid method based on a correlation function and complex resistivity, which introduces the correlation analyses between the transmitting source, the measured potential, and the injected current signal. According to the analyses, reliable results for complex resistivity spectra can be calculated, which can be further used for noise suppression. We apply the hybrid method to both numerical and field experiments to process measured SSIP data. Simulation tests show that the hybrid method not only suppresses the two types of noise but also improves the relative error of the complex resistivity spectrum. Field data processing shows that the hybrid method can minimize the standard deviation of the data and possess a greater ability to distinguish adjacent objects, which can improve the reliability of the data in subsequent processing and interpretation.


2019 ◽  
Vol 11 (15) ◽  
pp. 1829 ◽  
Author(s):  
Yao ◽  
Zhang ◽  
Yu ◽  
Zhao ◽  
Sun

The magnetic resonance sounding (MRS) method is a non-invasive, efficient and advanced geophysical method for groundwater detection. However, the MRS signal received by the coil sensor is extremely susceptible to electromagnetic noise interference. In MRS data processing, random noise suppression of noisy MRS data is an important research aspect. We propose an approach for intensive sampling sparse reconstruction (ISSR) and kernel regression estimation (KRE) to suppress random noise. The approach is based on variable frequency sampling, numerical integration and statistical signal processing combined with kernel regression estimation. In order to realize the approach, we proposed three specific sparse reconstructions, namely rectangular sparse reconstruction, trapezoidal sparse reconstruction and Simpson sparse reconstruction. To solve the distortion of peaks and valleys after sparse reconstruction, we introduced the KRE to deal with the processed data by the ISSR. Further, the simulation and field experiments demonstrate that the ISSR-KRE approach is a feasible and effective way to suppress random noise. Besides, we find that rectangular sparse reconstruction and trapezoidal sparse reconstruction are superior to Simpson sparse reconstruction in terms of noise suppression effect, and sampling frequency is positively correlated with signal-to-noise improvement ratio (SNIR). In one case of field experiment, the standard deviation of noisy MRS data was reduced from 1200.80 nV to 570.01 nV by the ISSR-KRE approach. The proposed approach provides theoretical support for random noise suppression and contributes to the development of MRS instrument with low power consumption and high efficiency. In the future, we will integrate the approach into MRS instrument and attempt to utilize them to eliminate harmonic noise from power line.


2019 ◽  
Vol 219 (2) ◽  
pp. 1281-1299 ◽  
Author(s):  
X T Dong ◽  
Y Li ◽  
B J Yang

SUMMARY The importance of low-frequency seismic data has been already recognized by geophysicists. However, there are still a number of obstacles that must be overcome for events recovery and noise suppression in low-frequency seismic data. The most difficult one is how to increase the signal-to-noise ratio (SNR) at low frequencies. Desert seismic data are a kind of typical low-frequency seismic data. In desert seismic data, the energy of low-frequency noise (including surface wave and random noise) is strong, which largely reduces the SNR of desert seismic data. Moreover, the low-frequency noise is non-stationary and non-Gaussian. In addition, compared with seismic data in other regions, the spectrum overlaps between effective signals and noise is more serious in desert seismic data. These all bring enormous difficulties to the denoising of desert seismic data and subsequent exploration work including geological structure interpretation and forecast of reservoir fluid. In order to solve this technological issue, feed-forward denoising convolutional neural networks (DnCNNs) are introduced into desert seismic data denoising. The local perception and weight sharing of DnCNNs make it very suitable for signal processing. However, this network is initially used to suppress Gaussian white noise in noisy image. For the sake of making DnCNNs suitable for desert seismic data denoising, comprehensive corrections including network parameter optimization and adaptive noise set construction are made to DnCNNs. On the one hand, through the optimization of denoising parameters, the most suitable network parameters (convolution kernel、patch size and network depth) for desert seismic denoising are selected; on the other hand, based on the judgement of high-order statistic, the low-frequency noise of processed desert seismic data is used to construct the adaptive noise set, so as to achieve the adaptive and automatic noise reduction. Several synthetic and actual data examples with different levels of noise demonstrate the effectiveness and robustness of the adaptive DnCNNs in suppressing low-frequency noise and preserving effective signals.


Geophysics ◽  
2003 ◽  
Vol 68 (1) ◽  
pp. 225-231 ◽  
Author(s):  
Rongfeng Zhang ◽  
Tadeusz J. Ulrych

This paper deals with the design and implementation of a new wavelet frame for noise suppression based on the character of seismic data. In general, wavelet denoising methods widely used in image and acoustic processing use well‐known conventional wavelets which, although versatile, are often not optimal for seismic data. The new approach, physical wavelet frame denoising uses a wavelet frame that takes into account the characteristics of seismic data both in time and space. Synthetic and real data tests show that the approach is effective even for seismic signals contaminated by strong noise which may be random or coherent, such as ground roll or air waves.


2015 ◽  
Vol 3 (1) ◽  
pp. T1-T4 ◽  
Author(s):  
Saleh Al-Dossary

Random seismic noise, present in all 3D seismic data sets, hampers manual interpretation by geoscientists and automatic analysis by a computer program. As a result, many noise-suppression techniques have been developed to enhance image quality. Accurately suppressing seismic noise without damaging image details is crucial in preserving small-scale geologic features for channel detection. The automatic detection of channel patterns theoretically should be easy because of their unique spatial signatures and scales, which differentiate them from other common 3D geobodies. For example, one notable channel characteristic has high local linearity: Spatial coherency is much greater in one direction than in other directions. A variety of techniques, such as spatial filters, can be used to enhance this “slender” channel feature in areas of high signal-to-noise ratio (S/N). Unfortunately, these spatial filters may also reduce the edge detectability in areas of low S/N. In this paper, I compared the effectiveness of three noise reduction filters: (1) running average, (2) redundant wavelet transform (RWT), and (3) polynomial fitting. I demonstrated the usefulness of these filters prior to edge detection to enhance channel patterns in seismic data collected from Saudi Arabia. The data examples demonstrated that RWT and polynomial fitting can successfully preserve, enhance, and delineate channel edges that were not visible in conventional seismic amplitude displays, whereas the running average filter further smeared the detectability of channel edges.


2012 ◽  
Vol 198-199 ◽  
pp. 1501-1505
Author(s):  
Xue Hao ◽  
Na Li ◽  
Lin Ren

Noise reduction or cancellation is important for getting clear and useful signals. This paper deals with the implementation of the multi-channel wiener filter algorithm for noise suppression of seismic data. Known the velocity of reflection event, utilizes the resemblance of reflection signal in each seismic trace, the multi-channel wiener filter algorithm is effective in enhance reflection event and suppress the random noise. This algorithm is used to CDP gathers and the simulation shows the method is effective.


2022 ◽  
Vol 14 (2) ◽  
pp. 263
Author(s):  
Haixia Zhao ◽  
Tingting Bai ◽  
Zhiqiang Wang

Seismic field data are usually contaminated by random or complex noise, which seriously affect the quality of seismic data contaminating seismic imaging and seismic interpretation. Improving the signal-to-noise ratio (SNR) of seismic data has always been a key step in seismic data processing. Deep learning approaches have been successfully applied to suppress seismic random noise. The training examples are essential in deep learning methods, especially for the geophysical problems, where the complete training data are not easy to be acquired due to high cost of acquisition. In this work, we propose a natural images pre-trained deep learning method to suppress seismic random noise through insight of the transfer learning. Our network contains pre-trained and post-trained networks: the former is trained by natural images to obtain the preliminary denoising results, while the latter is trained by a small amount of seismic images to fine-tune the denoising effects by semi-supervised learning to enhance the continuity of geological structures. The results of four types of synthetic seismic data and six field data demonstrate that our network has great performance in seismic random noise suppression in terms of both quantitative metrics and intuitive effects.


Sign in / Sign up

Export Citation Format

Share Document