Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) Infection Prevalence and Host Associations of Ticks Found on Peromyscus spp. in Maryland

Author(s):  
Julia E Poje ◽  
Jose F Azevedo ◽  
Nisha Nair ◽  
Kurayi Mahachi ◽  
Lexi E Frank ◽  
...  

Abstract Lyme disease, caused by Borrelia burgdorferi sensu stricto and most commonly transmitted by Ixodes scapularis Say (Ixodida: Ixodidae), is the most common tick-borne disease in Maryland. Because B. burgdorferi s.s. is maintained in enzootic cycles among wild mice (Peromyscus spp) and Ixodes spp ticks, differing patterns of parasitism of ticks on mice could impact the infection prevalence with B. burgdorferi. We determined the infection prevalence of Peromyscus spp as well as questing and partially engorged nymphal ticks collected at six sites on private land in five counties in Maryland from May to August 2020. Questing nymph infection prevalence (NIP) was 14%. We trapped 1258 mice and collected 554 ticks and 413 ear tissue samples. The prevalence of infested Peromyscus spp varied based on host age and sex, with older and male mice more likely to be infested. We detected a significant difference amongst the proportion of attached Ixodes and the location of trapping. Similarly, the prevalence of B. burgdorferi infected Peromyscus spp mice varied between locations (average mouse infection prevalence was 40%), with the highest prevalence in locations where Ixodes were the most commonly found ticks. The B. burgdorferi infection prevalence in partially engorged I. scapularis nymphs retrieved from Peromyscus spp was ~36% which lends further support to the host infection prevalence. Local differences in distribution of infected vectors and reservoirs are important factors to consider when planning interventions to reduce Lyme disease risk.

2019 ◽  
Vol 57 (1) ◽  
pp. 273-280 ◽  
Author(s):  
Alison E Simmons ◽  
Anna B Manges ◽  
Tashi Bharathan ◽  
Shannon L Tepe ◽  
Sara E McBride ◽  
...  

Abstract Lyme disease is the most commonly reported vector-borne illness and sixth most commonly reported notifiable infectious disease in the United States. The majority of cases occur in the Northeast and upper-Midwest, and the number and geographic distribution of cases is steadily increasing. The blacklegged tick (Ixodes scapularis Say) is the principal vector of the Lyme disease spirochete (Borrelia burgdorferi sensu stricto) in eastern North America. Although Lyme disease risk has been studied in residential and recreational settings across rural to urban landscapes including metropolitan areas, risk within U.S. cities has not been adequately evaluated despite the presence of natural and undeveloped public parkland where visitors could be exposed to B. burgdorferi-infected I. scapularis. We studied the occurrence of I. scapularis and infection prevalence of B. burgdorferi in four insular regional parks within the city of Pittsburgh to assess Lyme disease risk of exposure to infected adults and nymphs. We found that the density of I. scapularis adults (1.16 ± 0.21 ticks/100 m2) and nymphs (3.42 ± 0.45 ticks/100 m2), infection prevalence of B. burgdorferi in adults (51.9%) and nymphs (19.3%), and density of infected adults (0.60 ticks/100 m2) and nymphs (0.66 ticks/100 m2) are as high in these city parks as nonurban residential and recreational areas in the highly endemic coastal Northeast. These findings emphasize the need to reconsider, assess, and manage Lyme disease risk in greenspaces within cities, especially in high Lyme disease incidence states.


Parasitology ◽  
2016 ◽  
Vol 143 (10) ◽  
pp. 1310-1319 ◽  
Author(s):  
SANNE C. RUYTS ◽  
EVY AMPOORTER ◽  
ELENA C. COIPAN ◽  
LANDER BAETEN ◽  
DIETER HEYLEN ◽  
...  

SUMMARYLyme disease is caused by bacteria of theBorrelia burgdorferigenospecies complex and transmitted by Ixodid ticks. In North America only one pathogenic genospecies occurs, in Europe there are several. According to the dilution effect hypothesis (DEH), formulated in North America, nymphal infection prevalence (NIP) decreases with increasing host diversity since host species differ in transmission potential. We analysedBorreliainfection in nymphs from 94 forest stands in Belgium, which are part of a diversification gradient with a supposedly related increasing host diversity: from pine stands without to oak stands with a shrub layer. We expected changing tree species and forest structure to increase host diversity and decrease NIP. In contrast with the DEH, NIP did not differ between different forest types. Genospecies diversity however, and presumably also host diversity, was higher in oak than in pine stands. Infected nymphs tended to harbourBorrelia afzeliiinfection more often in pine stands whileBorrelia gariniiandBorrelia burgdorferiss. infection appeared to be more prevalent in oak stands. This has important health consequences, since the latter two cause more severe disease manifestations. We show that the DEH must be nuanced for Europe and should consider the response of multiple pathogenic genospecies.


Healthcare ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 89 ◽  
Author(s):  
John Scott ◽  
Kerry Clark ◽  
Janet Foley ◽  
Bradley Bierman ◽  
Lance Durden

Lyme disease has been documented in northern areas of Canada, but the source of the etiological bacterium, Borrelia burgdorferi sensu lato (Bbsl) has been in doubt. We collected 87 ticks from 44 songbirds during 2017, and 24 (39%) of 62 nymphs of the blacklegged tick, Ixodes scapularis, were positive for Bbsl. We provide the first report of Bbsl-infected, songbird-transported I. scapularis in Cape Breton, Nova Scotia; Newfoundland and Labrador; north-central Manitoba, and Alberta. Notably, we report the northernmost account of Bbsl-infected ticks parasitizing a bird in Canada. DNA extraction, PCR amplification, and DNA sequencing reveal that these Bbsl amplicons belong to Borrelia burgdorferi sensu stricto (Bbss), which is pathogenic to humans. Based on our findings, health-care providers should be aware that migratory songbirds widely disperse B. burgdorferi-infected I. scapularis in Canada’s North, and local residents do not have to visit an endemic area to contract Lyme disease.


Author(s):  
Dorothy Wallace ◽  
Vardayani Ratti ◽  
Anita Kodali ◽  
Jonathan M. Winter ◽  
Matthew P. Ayres ◽  
...  

Warmer temperatures are expected to increase the incidence of Lyme disease through enhanced tick maturation rates and a longer season of transmission. In addition, there could be an increased risk of disease export because of infected mobile hosts, usually birds. A temperature-driven seasonal model of Borrelia burgdorferi (Lyme disease) transmission among four host types is constructed as a system of nonlinear ordinary differential equations. The model is developed and parametrized based on a collection of lab and field studies. The model is shown to produce biologically reasonable results for both the tick vector (Ixodes scapularis) and the hosts when compared to a different set of studies. The model is used to predict the response of Lyme disease risk to a mean annual temperature increase, based on current temperature cycles in Hanover, NH. Many of the risk measures suggested by the literature are shown to change with increased mean annual temperature. The most straightforward measure of disease risk is the abundance of infected questing ticks, averaged over a year. Compared to this measure, which is difficult and resource-intensive to track in the field, all other risk measures considered underestimate the rise of risk with rise in mean annual temperature. The measure coming closest was “degree days above zero.” Disease prevalence in ticks and hosts showed less increase with rising temperature. Single field measurements at the height of transmission season did not show much change at all with rising temperature.


2021 ◽  
pp. 104063872110161
Author(s):  
Megan Neely ◽  
Luis Arroyo ◽  
Claire Jardine ◽  
Katie Clow ◽  
Alison Moore ◽  
...  

The blacklegged tick ( Ixodes scapularis), which transmits Borrelia burgdorferi, the causative agent of Lyme disease, has undergone rapid range expansion in Ontario. In horses, Lyme disease remains an enigmatic disease, with limited understanding of the pathogenesis and many issues pertaining to selection and interpretation of laboratory tests. We evaluated B. burgdorferi seropositivity in naturally exposed horses over a 12-mo period and compared paired samples with 2 common serologic tests. Serum samples were collected in 2017, ~1 y after initial testing, from a cohort of 22 horses that were seropositive in a 2016 seroprevalence study. Samples were tested using a C6 ELISA and a multiplex ELISA targeting outer surface proteins A, C, and F. 1 y after initial testing, 14 of 22 (64%) horses remained seropositive; 7 (32%) were positive on the multiplex ELISA, 2 (9%) on C6 ELISA, and 5 (23%) on both tests. Repeatability was 100% for the C6 ELISA, and 95% for the multiplex ELISA, with no significant difference between paired sample multiplex titer values. Our results indicate strong intra-test reliability, although further investigation is required to determine the clinical significance of serologic testing.


2009 ◽  
Vol 78 (1) ◽  
pp. 138-144 ◽  
Author(s):  
Sarojini Adusumilli ◽  
Carmen J. Booth ◽  
Juan Anguita ◽  
Erol Fikrig

ABSTRACT Lyme disease is the most common tick-borne illness in the United States. In this paper we explore the contribution of Ixodes scapularis ticks to the pathogenicity of Borrelia burgdorferi in mice. Previously we demonstrated that an isolate of B. burgdorferi sensu stricto (designated N40), passaged 75 times in vitro (N40-75), was infectious but was no longer able to cause arthritis and carditis in C3H mice. We now show that N40-75 spirochetes can readily colonize I. scapularis and multiply during tick engorgement. Remarkably, tick-transmitted N40-75 spirochetes cause disease in mice. N40-75 spirochetes isolated from these animals also retained their pathogenicity when subsequently administered to mice via syringe inoculation. Array analysis revealed that several genes associated with virulence, including bba25, bba65, bba66, bbj09, and bbk32, had higher expression levels in the tick-passaged N40-75 spirochete. These data suggest that transmission of a high-passage attenuated isolate of B. burgdorferi by the arthropod vector results in the generation of spirochetes that have enhanced pathogenesis in mice.


2019 ◽  
Vol 65 (2) ◽  
pp. 155-161
Author(s):  
Julie Lewis ◽  
Vett K. Lloyd

Lyme disease is a tick-borne disease that is emerging in Canada. The disease is caused by spirochetes of the Lyme borreliosis group, which is expanding as new species are discovered. In Canada, Lyme disease risk has so far been assessed primarily by detection of Borrelia burgdorferi sensu stricto. Of Ixodes scapularis ticks collected between 2014 and 2016 in New Brunswick, Canada, 7 were shown to be infected with Borrelia bissettii by nested PCR and sequencing of 5 B. bissettii genes. Since different Borrelia species are associated with different clinical manifestations and are not detected with the same diagnostic tests, the identification of a previously undocumented or underreported pathogenic Borrelia species has important implications for public and veterinary medicine.


Sign in / Sign up

Export Citation Format

Share Document