Oviposition Behavior of Natural Populations of Culex tarsalis and Culex restuans (Diptera: Culicidae) in Artificial Pools

1990 ◽  
Vol 27 (2) ◽  
pp. 248-255 ◽  
Author(s):  
Reinhart A. Brust
1982 ◽  
Vol 114 (1) ◽  
pp. 85-86 ◽  
Author(s):  
P. W. Arntfield ◽  
W. J. Gallaway ◽  
R. A. Brust

Diapause development in Culex tarsalis Coquillett has been characterized by reduced blood-feeding to complete termination of ovariole development at or before stage IIa (Bennington et al. 1958; Schaefer and Washino 1970; Schaefer et al. 1971; Bellamy and Corbet 1973; Mitchell 1979). The role that diapausing Culex species have in overwintering arboviruses has been examined (Eldridge 1966, 1968; Eldridge et al. 1972; Reeves 1974; Eldridge and Bailey 1979; Mitchell 1979). Gonotrophic dissociation and its implications for survival of the vector and virus has been reviewed by Washino (1977). Eldridge (1966) indicated gonotrophic dissociation was possible in Culex pipiens L. incubated at low temperature and short daylength and later reported failure of ovarioles of prehibernating C. pipiens to mature following a blood meal (Eldridge and Bailey 1979). Eldridge et al. (1972) reported that Culex restuans Theobald exhibited gonotrophic dissociation in response to conditioning by short daylength and low temperature. Mitchell (1981) has reported blood-feeding and gonotrophic dissociation in a significant portion of diapausing Culex tarsalis from Colorado, when females were kept at 15°C and at short daylength conditions.


2019 ◽  
Vol 57 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Adena M Why ◽  
William E Walton

Abstract Considerable previous research has focused on predator-associated semiochemicals and how they affect mosquito oviposition behavior. However, most of this work has been done without taking into consideration either the natural density of the predators or how other semiochemicals in aquatic environments might affect the responses of gravid mosquitoes. The influence of mosquitofish density, source water (tap vs pond), presence of freshly laid egg rafts, and removal of a putative source of semiochemicals (bacteria) on oviposition by Culex tarsalis Coquillett (Diptera: Culicidae) was studied in laboratory bioassays. Culex tarsalis females were deterred from laying egg rafts on water that contained semiochemicals associated with Gambusia affinis (Baird & Girard), but this deterrence was not strongly associated with the density of fish used to condition aged tap water. The number of egg rafts laid onto Gambusia-exudate water made with either tap water (density < 1 fish per liter) or pond water was typically ≥ 50% of that onto water that did not house mosquitofish. Gravid mosquitoes tested individually did not reduce oviposition onto Gambusia-exudate water as compared to controls. Likewise, oviposition by females with ablated wings did not differ significantly between Gambusia-exudate water and controls. Oviposition onto filter-sterilized Gambusia-exudate water was reduced relative to unfiltered water, suggesting that semiochemicals deterring egg-laying were still present after bacteria were removed. Taken together, these findings suggest that the responses of gravid Cx. tarsalis to chemicals from habitats containing mosquitofish are complex and the origin of the semiochemicals present in the Gambusia-exudate water needs to be elucidated.


Author(s):  
Adena M Why ◽  
Dong-Hwan Choe ◽  
William E Walton

Abstract The western mosquitofish, Gambusia affinis (Baird & Girard), has been used worldwide for the control of larval mosquitoes for more than 100 yr. We found that the western encephalitis mosquito, Culex tarsalis Coquillett (Diptera: Culicidae), can detect the presence of G. affinis in oviposition sites based on associated chemicals, leading to a decrease in the number of egg rafts laid. Three volatile chemical compounds were identified in the headspace above the water where G. affinis had been held for 24 h. Oviposition bioassays conducted using standards of the volatile compounds identified (dimethyl disulfide [DMDS], dimethyl trisulfide [DMTS], and S-methyl methanethiosulphonate) found that females reduced oviposition only when low concentrations of DMTS were present, but this response was not consistent across all trials and concentrations tested. DMDS, DMTS, and S-methyl methanethiosulphonate are known bacterial metabolic waste products and may be the source of the compounds. Two nonvolatile compounds of interest were found to be present in the Gambusia-exudate water. After tasting Cx. tarsalis were deterred from ovipositing onto Gambusia-treated water from which the bacteria had been removed by filtration, indicating that the kairomone may consist of nonvolatile compound(s). One of the nonvolatile compounds isolated from the Gambusia-treated water has a benzene ring structure similar to that of cholesterol but the structure of the two nonvolatile deterrents remains to be fully characterized. Our research shows that three volatile compounds and two nonvolatile compounds are present in water associated with G. affinis (Poeciliidae: Gambusia) and affect the oviposition behavior of Cx. tarsalis in laboratory bioassays.


2020 ◽  
Vol 36 (1) ◽  
pp. 37-42 ◽  
Author(s):  
S. C. Britch ◽  
K. J. Linthicum ◽  
D. L. Kline ◽  
R. L. Aldridge ◽  
F. V. Golden ◽  
...  

ABSTRACT Standard residual pesticides applied to US military materials such as camouflage netting can reduce mosquito biting pressure in the field but may contribute to the evolution of resistance. However, residual applications of a spatial repellent such as transfluthrin could allow mosquitoes the opportunity to escape, only inducing mortality if insects linger, for example after becoming trapped in a treated tent. In this study we investigated the capability of transfluthrin on 2 types of US military material to reduce natural populations of disease vector mosquitoes in a cool-arid desert field environment in southern California. We found that transfluthrin could reduce Culex tarsalis incursion into protected areas by up to 100% upon initial treatment and up to 45% for at least 16 days posttreatment, showing that this compound could be an effective element in the US Department of Defense integrated vector management system appropriate for further study.


Author(s):  
G. E. Tyson ◽  
M. J. Song

Natural populations of the brine shrimp, Artemia, may possess spirochete- infected animals in low numbers. The ultrastructure of Artemia's spirochete has been described by conventional transmission electron microscopy. In infected shrimp, spirochetal cells were abundant in the blood and also occurred intra- and extracellularly in the three organs examined, i.e. the maxillary gland (segmental excretory organ), the integument, and certain muscles The efferent-tubule region of the maxillary gland possessed a distinctive lesion comprised of a group of spirochetes, together with numerous small vesicles, situated in a cave-like indentation of the base of the tubule epithelium. in some instances the basal lamina at a lesion site was clearly discontinuous. High-voltage electron microscopy has now been used to study lesions of the efferent tubule, with the aim of understanding better their three-dimensional structure.Tissue from one maxillary gland of an infected, adult, female brine shrimp was used for HVEM study.


Author(s):  
Kyle T. Thornham ◽  
R. Jay Stipes ◽  
Randolph L. Grayson

Dogwood anthracnose, caused by Discula destructiva (1), is another new catastrophic tree disease that has ravaged natural populations of the flowering dogwood (Cornus florida) in the Appalachians over the past 15 years, and the epidemic is prognosticated to continue (2). An estimated 9.5 million acres have been affected, primarily in the Appalachian Mountains, from VA southwards, alone, and an estimated 50% of all dogwoods in PA have been killed. Since acid deposition has been linked experimentally with disease induction, and since the disease incidence and severity are more pronounced at higher elevations where lower pH precipitation events occur, we investigated the effect of acidic foliar sprays on moiphologic changes in the foliar cuticle and trichomes (3), the initial sites of infection and foci of Discula sporulation.


Sign in / Sign up

Export Citation Format

Share Document