Role of Copper in Collagen Cross-linking and Its Influence on Selected Mechanical Properties of Chick Bone and Tendon

1982 ◽  
Vol 112 (4) ◽  
pp. 708-716 ◽  
Author(s):  
William Opsahl ◽  
Haig Zeronian ◽  
Mike Ellison ◽  
Davis Lewis ◽  
Robert B. Rucker ◽  
...  
1999 ◽  
Vol 277 (4) ◽  
pp. H1385-H1391 ◽  
Author(s):  
Sarah M. Wells ◽  
B. Lowell Langille ◽  
J. Michael Lee ◽  
S. Lee Adamson

We previously reported changes in mechanical properties and collagen cross-linking of the ovine thoracic aorta during perinatal development and postnatal maturation, and we now report changes in biochemical composition (elastin, collagen, and DNA contents per mg wet wt) over the same developmental intervals. A comparison of results from the present and previous studies has yielded novel and important observations concerning the relationship between aortic mechanics and composition during maturation. Developmental changes in aortic incremental elastic modulus at low tensile stress ( E low) closely followed changes in relative elastin content (i.e., per mg wet wt). An 89% increase in E low during the perinatal period was associated with a 69% increase in relative elastin content, whereas neither variable changed during postnatal life. Incremental elastic modulus at high tensile stress ( E high) did not change during the perinatal period but increased 88% during postnatal life. This pattern closely paralleled changes in collagen cross-linking index, which did not change perinatally but almost doubled postnatally. In contrast, relative collagen content (per mg wet wt) increased only slightly from fetal to adult life, a trend that was unrelated to aortic mechanics. Substantial, progressive decreases in measures of wall viscosity (pressure wave attenuation coefficient and viscoelastic phase angle) from fetal to adult life followed the pattern observed for relative DNA (smooth muscle cell) content (per mg wet wt). Our findings suggest that accumulation of elastin per milligram wet weight contributes most to developmental changes in E low, change in collagen cross-linking is the primary determinant of developmental changes in E high, and cell accumulation contributes most to developmental changes in wall viscosity.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Marwa Kamel ◽  
Mohamed Wagih ◽  
Gokhan S. Kilic ◽  
Concepcion R. Diaz-Arrastia ◽  
Mohamed A. Baraka ◽  
...  

The role of the extracellular matrix (ECM) in uterine fibroids (UF) has recently been appreciated. Overhydroxylation of lysine residues and the subsequent formation of hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) cross-links underlie the ECM stiffness and profoundly affect tumor progression. The aim of the current study was to investigate the relationship between ECM of UF, collagen and collagen cross-linking enzymes [lysyl hydroxylases (LH) and lysyl oxidases (LOX)], and the development and progression of UF. Our results indicated that hydroxyl lysine (Hyl) and HP cross-links are significantly higher in UF compared to the normal myometrial tissues accompanied by increased expression of LH (LH2b) and LOX. Also, increased resistance to matrix metalloproteinases (MMP) proteolytic degradation activity was observed. Furthermore, the extent of collagen cross-links was positively correlated with the expression of myofibroblast marker (α-SMA), growth-promoting markers (PCNA; pERK1/2;FAKpY397; Ki-67; and Cyclin D1), and the size of UF. In conclusion, our study defines the role of overhydroxylation of collagen and collagen cross-linking enzymes in modulating UF cell proliferation, differentiation, and resistance to MMP. These effects can establish microenvironment conducive for UF progression and thus represent potential target treatment options of UF.


2008 ◽  
Vol 41 (7) ◽  
pp. 1427-1435 ◽  
Author(s):  
Thomas Siegmund ◽  
Matthew R. Allen ◽  
David B. Burr

2015 ◽  
Vol 4 (73) ◽  
pp. 12760-12774
Author(s):  
Atul Gupta ◽  
Superna M ◽  
Bhimasankar D ◽  
Vijayleela M

2011 ◽  
Vol 52 (9) ◽  
pp. 6363 ◽  
Author(s):  
Gage Brummer ◽  
Stacy Littlechild ◽  
Scott McCall ◽  
Yuntao Zhang ◽  
Gary W. Conrad

2004 ◽  
Vol 84 (2) ◽  
pp. 649-698 ◽  
Author(s):  
MICHAEL KJÆR

Kjær, Michael. Role of Extracellular Matrix in Adaptation of Tendon and Skeletal Muscle to Mechanical Loading. Physiol Rev 84: 649–698, 2004; 10.1152/physrev.00031.2003.—The extracellular matrix (ECM), and especially the connective tissue with its collagen, links tissues of the body together and plays an important role in the force transmission and tissue structure maintenance especially in tendons, ligaments, bone, and muscle. The ECM turnover is influenced by physical activity, and both collagen synthesis and degrading metalloprotease enzymes increase with mechanical loading. Both transcription and posttranslational modifications, as well as local and systemic release of growth factors, are enhanced following exercise. For tendons, metabolic activity, circulatory responses, and collagen turnover are demonstrated to be more pronounced in humans than hitherto thought. Conversely, inactivity markedly decreases collagen turnover in both tendon and muscle. Chronic loading in the form of physical training leads both to increased collagen turnover as well as, dependent on the type of collagen in question, some degree of net collagen synthesis. These changes will modify the mechanical properties and the viscoelastic characteristics of the tissue, decrease its stress, and likely make it more load resistant. Cross-linking in connective tissue involves an intimate, enzymatical interplay between collagen synthesis and ECM proteoglycan components during growth and maturation and influences the collagen-derived functional properties of the tissue. With aging, glycation contributes to additional cross-linking which modifies tissue stiffness. Physiological signaling pathways from mechanical loading to changes in ECM most likely involve feedback signaling that results in rapid alterations in the mechanical properties of the ECM. In developing skeletal muscle, an important interplay between muscle cells and the ECM is present, and some evidence from adult human muscle suggests common signaling pathways to stimulate contractile and ECM components. Unaccostumed overloading responses suggest an important role of ECM in the adaptation of myofibrillar structures in adult muscle. Development of overuse injury in tendons involve morphological and biochemical changes including altered collagen typing and fibril size, hypervascularization zones, accumulation of nociceptive substances, and impaired collagen degradation activity. Counteracting these phenomena requires adjusted loading rather than absence of loading in the form of immobilization. Full understanding of these physiological processes will provide the physiological basis for understanding of tissue overloading and injury seen in both tendons and muscle with repetitive work and leisure time physical activity.


Polymer ◽  
2015 ◽  
Vol 65 ◽  
pp. 202-209 ◽  
Author(s):  
Xiao Kuang ◽  
Guoming Liu ◽  
Liuchun Zheng ◽  
Chuncheng Li ◽  
Dujin Wang

2008 ◽  
Vol 18 (3) ◽  
pp. 239-247 ◽  
Author(s):  
Kamran Sardari ◽  
Hossein Kazemi ◽  
Mohamad Reza Emami ◽  
Ahmad Reza Movasaghi ◽  
Amir Afkhami Goli

Sign in / Sign up

Export Citation Format

Share Document