scholarly journals Expression and Cellular Distribution of P-Glycoprotein and Breast Cancer Resistance Protein in Amyotrophic Lateral Sclerosis Patients

2019 ◽  
Vol 79 (3) ◽  
pp. 266-276
Author(s):  
Erwin A van Vliet ◽  
Anand M Iyer ◽  
Lucia Mesarosova ◽  
Hilal Çolakoglu ◽  
Jasper J Anink ◽  
...  

Abstract For amyotrophic lateral sclerosis (ALS), achieving and maintaining effective drug levels in the brain is challenging due to the activity of ATP-binding cassette (ABC) transporters which efflux drugs that affect drug exposure and response in the brain. We investigated the expression and cellular distribution of the ABC transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) using immunohistochemistry in spinal cord (SC), motor cortex, and cerebellum from a large cohort of genetically well characterized ALS patients (n = 25) and controls (n = 14). The ALS group included 17 sporadic (sALS) and 8 familial (fALS) patients. Strong P-gp expression was observed in endothelial cells in both control and ALS specimens. Immunohistochemical analysis showed higher P-gp expression in reactive astroglial cells in both gray (ventral horn) and white matter of the SC, as well as in the motor cortex of all ALS patients, as compared with controls. BCRP expression was higher in glia in the SC and in blood vessels and glia in the motor cortex of ALS patients, as compared with controls. P-gp and BCRP immunoreactivity did not differ between sALS and fALS cases. The upregulation of both ABC transporters in the brain may explain multidrug resistance in ALS patients and has implications for the use of both approved and experimental therapeutics.

2009 ◽  
Vol 29 (6) ◽  
pp. 1079-1083 ◽  
Author(s):  
Leon M Tai ◽  
A Jane Loughlin ◽  
David K Male ◽  
Ignacio A Romero

The clearance of amyloid beta (Aβ) from the brain represents a novel therapeutic target for Alzheimer's disease. Conflicting data exist regarding the contribution of adenosine triphosphatebinding cassette transporters to the clearance of Aβ through the blood-brain barrier. Therefore, we investigated whether Aβ could be a substrate for P-glycoprotein (P-gp) and/or for breast cancer resistance protein (BCRP) using a human brain endothelial cell line, hCMEC/D3. Inhibition of P-gp and BCRP increased apical-to-basolateral, but not basolateral-to-apical, permeability of hCMEC/D3 cells to 125l Aβ 1–40. Our in vitro data suggest that P-gp and BCRP might act to prevent the blood-borne Aβ 1–40 from entering the brain.


2009 ◽  
Vol 36 (3) ◽  
pp. 239-246 ◽  
Author(s):  
Kazunori Kawamura ◽  
Tomoteru Yamasaki ◽  
Joji Yui ◽  
Akiko Hatori ◽  
Fujiko Konno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document