scholarly journals Hybrid volumetric-modulated arc therapy for postoperative breast cancer including regional lymph nodes: the advantage of dosimetric data and safety of toxicities

2020 ◽  
Vol 61 (5) ◽  
pp. 747-754
Author(s):  
Yoshiko Doi ◽  
Minoru Nakao ◽  
Hideharu Miura ◽  
Shuichi Ozawa ◽  
Masahiro Kenjo ◽  
...  

ABSTRACT To improve the homogeneity and conformity of the irradiation dose for postoperative breast cancer including regional lymph nodes, we planned Hybrid volumetric-modulated arc therapy (VMAT), which combines conventional tangential field mainly for the chest area and VMAT mainly for the supraclavicular area and marginal zone. In this study, we compared the dosimetric impact between traditional 3D conformal radiotherapy (3DCRT) and Hybrid VMAT and observed toxicities following Hybrid VMAT. A total of 70 patients indicated between October 2016 and December 2017 were included. The prescribed dose was 50 Gy/25 fractions. For the dosimetric impact, 3DCRT and Hybrid VMAT plans were compared in each patient with respect to the dosimetric parameters. Toxicities were followed using the Common Terminology Criteria for Adverse Events version 4.0. The median follow-up duration was 319 days. For the dosimetric impact, the homogeneity index (HI) and conformity index (CI) of PTV were significantly improved in the Hybrid VMAT plan compared with that in the 3DCRT plan (HI, 0.15 ± 0.07 in Hybrid VMAT vs 0.41 ± 0.19 in 3DCRT, P < 0.001; CI, 1.61 ± 0.44 in Hybrid VMAT vs 2.10 ± 0.56 in 3DCRT, P < 0.001). The mean irradiated ipsilateral lung dose was not significantly different in both plans (12.0 ± 2.4 Gy in Hybrid VMAT vs 11.8 ± 2.8 Gy in 3DCRT, P < 0.533). Regarding toxicity, there were no patients who developed ≥grade 3 acute toxicity and ≥grade 2 pneumonitis during the follow-up. Hybrid VMAT for postoperative breast cancer including regional lymph nodes was a reasonable technique that improved the homogeneity and conformity of the irradiation dose to the planning target volume while keeping the irradiation dose to organs at risk to a minimum.

2014 ◽  
Vol 03 (01) ◽  
pp. 5-11
Author(s):  
Jacopo Nori ◽  
Icro Meattini ◽  
Dalmar Abdulcadir ◽  
Elisabetta Giannotti ◽  
Diego De Benedetto ◽  
...  

2021 ◽  
Vol 55 (4) ◽  
pp. 499-507
Author(s):  
Yuan Xu ◽  
Pan Ma ◽  
Zhihui Hu ◽  
Yuan Tian ◽  
Kuo Men ◽  
...  

Abstract Background Non-coplanar volumetric modulated arc therapy (ncVMAT) is proposed to reduce toxicity in heart and lungs for locoregional radiotherapy of left-sided breast cancer, including internal mammary nodes (IMN). Patients and methods This retrospective study included 10 patients with left-sided breast cancer who underwent locoregional radiotherapy after breast-conserving surgery. For each patient, the ncVMAT plan was designed with four partial arcs comprising two coplanar arcs and two non-coplanar arcs, with a couch rotating to 90°. The prescribed dose was normalized to cover 95% of planning target volume (PTV), with 50 Gy delivered in 25 fractions. For each ncVMAT plan, dosimetric parameters were compared with the coplanar volumetric modulated arc therapy (coV-MAT) plan. Results T here were improvements in conformity index, homogeneity index and V55 of total target volume (PTVall) comparing ncVMAT to coVMAT (p < 0.001). Among the organs at risk, the average V30, V20, V10, V5, and mean dose (Dmean) of the heart decreased significantly (p < 0.001). Furthermore, ncVMAT significantly reduced the mean V20, V10, V5, and Dmean of left lung and the mean V10 and V5 and Dmean of contralateral lung (p < 0.001). An improved sparing of the left anterior descending coronary artery and right breast were also observed with ncVMAT (p < 0.001). Conclusions Compared to coVMAT, ncVMAT provides improved conformity and homogeneity of whole P TV, better dose sparing of the heart, bilateral lungs, left anterior descending coronary artery (LAD), and right breast for locoregional radiotherapy of left-sided breast cancer with IMN, potentially reducing the risk of normal tissue damage.


2019 ◽  
Vol 19 (4) ◽  
pp. 393-398 ◽  
Author(s):  
Payal Raina ◽  
Sudha Singh ◽  
Rajanigandha Tudu ◽  
Rashmi Singh ◽  
Anup Kumar

AbstractAim:The aim of this study was to compare volumetric modulated arc therapy (VMAT) with dynamic intensity-modulated radiation therapy (dIMRT) and step-and-shoot IMRT (ssIMRT) for different treatment sites.Materials and methods:Twelve patients were selected for the planning comparison study. This included three head and neck, three brain, three rectal and three cervical cancer patients. Total dose of 50 Gy was given for all the plans. Plans were done for Elekta synergy with Monaco treatment planning system. All plans were generated with 6 MV photons beam. Plan evaluation was based on the ability to meet the dose volume histogram, dose homogeneity index, conformity index and radiation delivery time, and monitor unit needs to deliver the prescribed dose.Results:The VMAT and dIMRT plans achieved the better conformity (CI98% = 0·965 ± 0·023) and (CI98% = 0·939 ± 0·01), respectively, while ssIMRT plans were slightly inferior (CI98% = 0·901 ± 0·038). The inhomogeneity in the planning target volume (PTV) was highest with ssIMRT with HI equal to 0·097 ± 0·015 when compared to VMAT with HI equal to 0·092 ± 0·0369 and 0·095 ± 0·023 with dIMRT. The integral dose is found to be inferior with VMAT 105·31 ± 53·6 (Gy L) when compared with dIMRT 110·75 ± 52·9 (Gy L) and ssIMRT 115 38 ± 55·1(Gy L). All the techniques respected the planning objective for all organs at risk. The delivery time per fraction for VMAT was much lower than dIMRT and ssIMRT.Findings:Our results indicate that dIMRT and VMAT provide better sparing of normal tissue, homogeneity and conformity than ssIMRT with reduced treatment delivery time.


2021 ◽  
Vol 11 ◽  
Author(s):  
Daria Kobyzeva ◽  
Larisa Shelikhova ◽  
Anna Loginova ◽  
Francheska Kanestri ◽  
Diana Tovmasyan ◽  
...  

Total body irradiation (TBI) in combination with chemotherapy is widely used as a conditioning regimen in pediatric and adult hematopoietic stem cell transplantation (HSCT). The combination of TBI with chemotherapy has demonstrated superior survival outcomes in patients with acute lymphoblastic and myeloid leukemia when compared with conditioning regimens based only on chemotherapy. The clinical application of intensity-modulated radiation therapy (IMRT)-based methods (volumetric modulated arc therapy (VMAT) and TomoTherapy) seems to be promising and has been actively used worldwide. The optimized conformal total body irradiation (OC-TBI) method described in this study provides selected dose reduction for organs at risk with respect to the most significant toxicity (lungs, kidneys, lenses). This study included 220 pediatric patients who received OC-TBI with subsequent chemotherapy and allogenic HSCT with TCRαβ/CD19 depletion. A group of 151 patients received OC-TBI using TomoTherapy, and 40 patients received OC-TBI using the Elekta Synergy™ linac with an Agility-MLC (Elekta, Crawley, UK) using volumetric modulated arc therapy (VMAT). Twenty-nine patients received OC-TBI with supplemental simultaneous boost to bone marrow—(SIB to BM) up to 15 Gy: 28 patients (pts)—TomoTherapy; one patient—VMAT. The follow-up duration ranged from 0.3 to 6.4 years (median follow-up, 2.8 years). Overall survival (OS) for all the patients was 63% (95% CI: 56–70), and event-free survival (EFS) was 58% (95% CI: 51–65). The cumulative incidence of transplant-related mortality (TRM) was 10.7% (95% CI: 2.2–16) for all patients. The incidence of early TRM (&lt;100 days) was 5.0% (95% CI: 1.5–8.9), and that of late TRM (&gt;100 days) was 5.7 (95% CI: 1.7–10.2). The main causes of death for all the patients were relapse and infection. The concept of OC-TBI using IMRT VMAT and helical treatment delivery on a TomoTherapy treatment unit provides maximum control of the dose distribution in extended targets with simultaneous dose reduction for organs at risk. This method demonstrated a low incidence of severe side effects after radiation therapy and predictable treatment effectiveness. Our initial experience demonstrates that OC-TBI appears to be a promising technique for the treatment of pediatric patients.


2019 ◽  
Vol 19 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Ehab Saad ◽  
Khaled Elshahat ◽  
Hussein Metwally

AbstractBackground:While treating brain metastasis with whole-brain radiotherapy incorporating a simultaneous integrated boost (WBRT-SIB), the risk of hippocampus injury is high. The aim of this study is to compare dosimetrically between intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in sparing of hippocampus and organs at risk (OARs) and planning target volume (PTV) coverage.Methods:In total, 16 patients presenting with more than one brain metastases were previously treated and then retrospectively planned using VMAT and IMRT techniques. For each patient, a dual-arc VMAT and another IMRT (five beams) plans were created. For both techniques, 30 Gy in 10 fractions was prescribed to the whole brain (WB) minus the hippocampi and 45 Gy in 10 fractions to the tumour with 0·5 cm margin. Dose–volume histogram (DVH), conformity index (CI) and homogeneity index (HI) of PTV, hippocampus mean and maximum dose and other OARs for both techniques were calculated and compared.Results:A statistically significant advantage was found in WB-PTV CI and HI with VMAT, compared to IMRT. There were lower hippocampus mean and maximum doses in VMAT than IMRT. The maximum hippocampus dose ranged between 15·5 and 19·2 Gy and between 18·4 and 20·6 Gy in VMAT and IMRT, respectively. The mean dose of the hippocampus ranged between 11·5 and 17·7 Gy and between 13·2 and 18·3 Gy in VMAT and IMRT, respectively.Conclusion:Using WBRT-SIB technique, VMAT showed better PTV coverage with less mean and maximum doses to the hippocampus than IMRT. Clinical randomised studies are needed to confirm safety and clinical benefit of WBRT-SIB.


Sign in / Sign up

Export Citation Format

Share Document