scholarly journals The influence of elevated rhizosphere dissolved inorganic carbon concentrations on respiratory O2 and CO2 flux in tomato roots

1998 ◽  
Vol 49 (329) ◽  
pp. 1977-1985 ◽  
Author(s):  
M. M. v. d. Westhuizen ◽  
M. D. Cramer
1989 ◽  
Vol 67 (12) ◽  
pp. 3429-3438 ◽  
Author(s):  
H. Godmaire ◽  
C. Nalewajko

Growth and photosynthesis of axenic and colonized Myriophyllum were compared to test the validity of using axenic plants as controls in the quantification of extracellular organic carbon (EOC) release. Axenic plants were characterized by lower growth rates that could be attributed to the unavailability of some major nutrients other than N, P, or C and (or) micronutrients in the culture medium. Vmax, the maximum rate of bicarbonate uptake, and Pmax, the maximum light-saturated rate of photosynthesis, of nonaxenic Myriophyllum were significantly higher than those of axenic plants. These differences could be attributed to epiphytic algal photosynthesis. At subsaturating dissolved inorganic carbon concentrations (below 15 mg C ∙ L−1), both plants achieved similar rates of photosynthesis but differed in the kinetics of EOC release. In short-term incubation (2–6 h), 14C-EOC accounted for 0.2–0.4% of photosynthesis, and total EOC amounted to 1.3–3.8%. 14C-EOC consisted primarily (≥ 60%) of low molecular weight products (≤ 1500). No differences were apparent in size distribution patterns of 14C-EOC from axenic and nonaxenic Myriophyllum and at different dissolved inorganic carbon concentrations. Axenic plants generally showed lower rates of EOC release (in absolute values). On colonized Myriophyllum, the contribution of the epiphytes to the EOC release pool was found to be low (≤ 20% of 14C-EOC) and could partly explain the greater EOC release rates of nonaxenic plants. However, our results are not totally conclusive because the lower growth rate of axenic plants could also be responsible for the lower photosynthetic and EOC release rates of these plants.


Ocean Science ◽  
2016 ◽  
Vol 12 (1) ◽  
pp. 319-333 ◽  
Author(s):  
Tim Stöven ◽  
Toste Tanhua ◽  
Mario Hoppema ◽  
Wilken-Jon von Appen

Abstract. The storage of anthropogenic carbon in the ocean's interior is an important process which modulates the increasing carbon dioxide concentrations in the atmosphere. The polar regions are expected to be net sinks for anthropogenic carbon. Transport estimates of dissolved inorganic carbon and the anthropogenic offset can thus provide information about the magnitude of the corresponding storage processes. Here we present a transient tracer, dissolved inorganic carbon (DIC) and total alkalinity (TA) data set along 78°50′ N sampled in the Fram Strait in 2012. A theory on tracer relationships is introduced, which allows for an application of the inverse-Gaussian–transit-time distribution (IG-TTD) at high latitudes and the estimation of anthropogenic carbon concentrations. Mean current velocity measurements along the same section from 2002–2010 were used to estimate the net flux of DIC and anthropogenic carbon by the boundary currents above 840 m through the Fram Strait. The new theory explains the differences between the theoretical (IG-TTD-based) tracer age relationship and the specific tracer age relationship of the field data, by saturation effects during water mass formation and/or the deliberate release experiment of SF6 in the Greenland Sea in 1996, rather than by different mixing or ventilation processes. Based on this assumption, a maximum SF6 excess of 0.5–0.8 fmol kg−1 was determined in the Fram Strait at intermediate depths (500–1600 m). The anthropogenic carbon concentrations are 50–55 µmol kg−1 in the Atlantic Water/Recirculating Atlantic Water, 40–45 µmol kg−1 in the Polar Surface Water/warm Polar Surface Water and between 10 and 35 µmol kg−1 in the deeper water layers, with lowest concentrations in the bottom layer. The net fluxes through the Fram Strait indicate a net outflow of  ∼  0.4 DIC and  ∼  0.01 PgC yr−1 anthropogenic carbon from the Arctic Ocean into the North Atlantic, albeit with high uncertainties.


2012 ◽  
Vol 80 ◽  
pp. 143-157 ◽  
Author(s):  
Heather Stoll ◽  
Gerald Langer ◽  
Nobumichi Shimizu ◽  
Kinuyo Kanamaru

1978 ◽  
Vol 35 (4) ◽  
pp. 422-430 ◽  
Author(s):  
R. R. Weiler ◽  
J. O. Nriagu

Values for the δ13C of the dissolved total inorganic carbon in the Great Lakes are presented. The surface values are about two parts per thousand more negative than the values to be expected assuming equilibrium with the atmospheric CO2 reservoir. In the hypolimnion of Lake Erie, the values become more negative as the summer progresses due to the increasing amounts of CO2 from decaying organic matter. Although Lakes Erie and Ontario receive considerably larger amounts of organic carbon as domestic and industrial sewage effluents than the upper Great Lakes, their higher inorganic carbon concentrations evidently mask any isotopic effects from the decay of the organic pollutants. Models to explain the variation in the δ13C in the hypolimnion and epilimnion of a lake are presented. The agreement between predicted and observed δ13C trends for the hypolimnion model is reasonable, suggesting that the flux rates assumed in the model are reasonable for the processes occurring in the lakes. Key words: carbon isotopes, Great Lakes, inorganic carbon, models


2018 ◽  
Author(s):  
Denise Müller-Dum ◽  
Thorsten Warneke ◽  
Tim Rixen ◽  
Moritz Müller ◽  
Antje Baum ◽  
...  

Abstract. Tropical peat-draining rivers are known as potentially large sources of carbon dioxide (CO2) to the atmosphere due to high loads of carbon they receive from surrounding soils. However, not many seasonally resolved data are available, limiting our understanding of these systems. We report the first measurements of carbon dioxide partial pressure (pCO2) in the Rajang River and Estuary, the longest river in Malaysia. The Rajang River catchment is characterized by extensive peat deposits found in the delta region, and by human impact such as logging, land use and river damming. pCO2 averaged 2919 ± 573 µatm during the wet season and 2732 ± 443 µatm during the dry season. This is at the low end of reported values for Southeast Asian peat-draining rivers, but higher than values reported for Southeast Asian rivers that do not flow through peat deposits. However, dissolved inorganic carbon (DIC) and δ13C-DIC data did not suggest that peatlands were an important source of inorganic carbon to the river, with an average DIC concentration of 203.9 ± 59.6 µmol L−1 and an average δ13C-DIC of −8.06 ± 1.90 ‰. Also, compared to rivers with similar peat coverage, the pCO2 in the Rajang was rather low. Thus, we suggest that peat coverage is, by itself, insufficient as sole predictor of CO2 emissions from peat-draining rivers, and that other factors, like the spatial distribution of peat in the catchment and pH, need to be considered as well. In the Rajang River, peatlands probably do not contribute much to the CO2 flux due to the proximity of the peatlands to the coast. CO2 fluxes to the atmosphere were 2.28 ± 0.52 gC m−2 d−1 (wet season) and 2.45 ± 0.45 gC m−2 d−1 (dry season), making the Rajang River a moderate source of carbon to the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document