scholarly journals On direct and indirect probabilistic reasoning in legal proof

2014 ◽  
Vol 13 (3-4) ◽  
pp. 327-337 ◽  
Author(s):  
Henry Prakken
2018 ◽  
Vol 1 (1) ◽  
pp. 21-36
Author(s):  
Syufaat Syufaat

Waqf has two dimensional meaning; the spiritual dimension that is taqarrub to Allah and the social dimension as the source of Islamic financial for the welfare of the people. Waqf disputes can be caused by several reasons; waqf land is not accompanied with a pledge; waqf is done on the basis of mutual trust so it has no legal proof and ownership. Currently, the choice to use the court is less effective in resolving disputes. Hence, the public ultimately chooses non-litigation efforts as a way to resolve the disputes. Mediation process is preferred by many as it is viewed to be the fairest way where none of the two parties wins or loses (win-win solution). It is also fast and cheap. This study is intended to examine how to solve waqf dispute with mediation model according to the waqf law, and how the application of mediation in the Religious Courts system


Author(s):  
PAUL A. BOXER

Autonomous robots are unsuccessful at operating in complex, unconstrained environments. They lack the ability to learn about the physical behavior of different objects through the use of vision. We combine Bayesian networks and qualitative spatial representation to learn general physical behavior by visual observation. We input training scenarios that allow the system to observe and learn normal physical behavior. The position and velocity of the visible objects are represented as qualitative states. Transitions between these states over time are entered as evidence into a Bayesian network. The network provides probabilities of future transitions to produce predictions of future physical behavior. We use test scenarios to determine how well the approach discriminates between normal and abnormal physical behavior and actively predicts future behavior. We examine the ability of the system to learn three naive physical concepts, "no action at a distance", "solidity" and "movement on continuous paths". We conclude that the combination of qualitative spatial representations and Bayesian network techniques is capable of learning these three rules of naive physics.


Author(s):  
Paul Christoph Gembarski ◽  
Stefan Plappert ◽  
Roland Lachmayer

AbstractMaking design decisions is characterized by a high degree of uncertainty, especially in the early phase of the product development process, when little information is known, while the decisions made have an impact on the entire product life cycle. Therefore, the goal of complexity management is to reduce uncertainty in order to minimize or avoid the need for design changes in a late phase of product development or in the use phase. With our approach we model the uncertainties with probabilistic reasoning in a Bayesian decision network explicitly, as the uncertainties are directly attached to parts of the design artifact′s model. By modeling the incomplete information expressed by unobserved variables in the Bayesian network in terms of probabilities, as well as the variation of product properties or parameters, a conclusion about the robustness of the product can be made. The application example of a rotary valve from engineering design shows that the decision network can support the engineer in decision-making under uncertainty. Furthermore, a contribution to knowledge formalization in the development project is made.


2011 ◽  
Vol 42 (3) ◽  
pp. 270-276 ◽  
Author(s):  
Hannah E. Reese ◽  
Richard J. McNally ◽  
Sabine Wilhelm

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sichao Yang ◽  
Johannes Bill ◽  
Jan Drugowitsch ◽  
Samuel J. Gershman

AbstractMotion relations in visual scenes carry an abundance of behaviorally relevant information, but little is known about how humans identify the structure underlying a scene’s motion in the first place. We studied the computations governing human motion structure identification in two psychophysics experiments and found that perception of motion relations showed hallmarks of Bayesian structural inference. At the heart of our research lies a tractable task design that enabled us to reveal the signatures of probabilistic reasoning about latent structure. We found that a choice model based on the task’s Bayesian ideal observer accurately matched many facets of human structural inference, including task performance, perceptual error patterns, single-trial responses, participant-specific differences, and subjective decision confidence—especially, when motion scenes were ambiguous and when object motion was hierarchically nested within other moving reference frames. Our work can guide future neuroscience experiments to reveal the neural mechanisms underlying higher-level visual motion perception.


2014 ◽  
Vol 50 (4) ◽  
pp. 521-534
Author(s):  
CALUM MILLER

AbstractThere has been a trend within natural theology to present arguments for theism deductively, such that at least one of the premises is likely to be extremely controversial. For those arguments with less controversial premises, the conclusion is usually something short of theism. On these grounds, some have employed probabilistic reasoning to revive classical arguments – to use less controversial premises in achieving a conclusion directly relevant to whether theism is true or not. Here, I formulate the kalam cosmological argument in Bayesian terms, and argue that doing so renders many objections levelled against it obsolete.


Sign in / Sign up

Export Citation Format

Share Document