Adult Total Brachial Plexus Injury

Author(s):  
Mustafa Nadi ◽  
Rajiv Midha

Total brachial plexus injury (BPI) typically results from high-energy vehicular accidents, affects mostly young adult males, and produces a flail, insensate limb. Because of the association of total BPI with head and cervical spine injuries, diagnosis might be delayed. Recognizing patients with total BPI and using electrodiagnostic and imaging tests in a timely fashion are critical. Advances in microsurgical techniques, primary nerve transfer, appropriate nerve graft utilization from a remaining intact (often C5) spinal nerve root, and free muscle transfers have improved outcomes. However, limited recovery even after reconstruction and severe deafferentation pain both remain challenging problems that further advancements will need to overcome.

2013 ◽  
Vol 118 (1) ◽  
pp. 155-159 ◽  
Author(s):  
Johannes F. Plate ◽  
L. Kirsten Ely ◽  
Benjamin R. Pulley ◽  
Beth P. Smith ◽  
Zhongyu Li

The treatment of patients with prolonged denervation from a posterior cord brachial plexus injury is challenging and no management guidelines exist to follow. The authors describe the case of a 26-year-old man who presented to our clinic for treatment 11 months after suffering a high-energy injury to the posterior cord of the brachial plexus. A combined 9-cm proximal cable nerve graft procedure and a pronator branch to the posterior interosseous nerve transfer were performed. Satisfactory deltoid, triceps, wrist, and finger extensor recovery was noted 3 years after surgery. Patients with prolonged denervation from posterior cord injuries can be successfully treated with a combination of a proximal nerve graft and a distal nerve transfer.


Hand ◽  
2021 ◽  
pp. 155894472110306
Author(s):  
Kevin J. Nickel ◽  
Alexander Morzycki ◽  
Ralph Hsiao ◽  
Michael J. Morhart ◽  
Jaret L. Olson

Background Restoration of shoulder function in obstetrical brachial plexus injury is paramount. There remains debate as to the optimal method of upper trunk reconstruction. The purpose of this study was to test the hypothesis that spinal accessory nerve to suprascapular nerve transfer leads to improved shoulder external rotation relative to sural nerve grafting. Methods A systematic review of Medline, EMBASE, EBSCO CINAHL, SCOPUS, Cochrane Library, and TRIP Pro from inception was conducted. Our primary outcome was shoulder external rotation. Results Four studies were included. Nerve transfer was associated with greater shoulder external rotation relative to nerve grafting (mean difference: 0.82 AMS 95% confidence interval [CI]: 0.27-1.36, P < .005). Patients undergoing nerve grafting were more likely to undergo a secondary shoulder stabilizing procedure (odds ratio [OR]: 1.27, 95% CI: 0.8376-1.9268). Conclusion In obstetrical brachial plexus injury, nerve transfer is associated with improved shoulder external rotation and a lower rate of secondary shoulder surgery. Level of Evidence Level III; Therapeutic


2019 ◽  
Vol 24 (03) ◽  
pp. 283-288
Author(s):  
Yusuke Nagano ◽  
Daisuke Kawamura ◽  
Alaa Terkawi ◽  
Atsushi Urita ◽  
Yuichiro Matsui ◽  
...  

Background: Partial ulnar nerve transfer to the biceps motor branch of the musculocutaneous nerve (Oberlin’s transfer) is a successful approach to restore elbow flexion in patients with upper brachial plexus injury (BPI). However, there is no report on more than 10 years subjective and objective outcomes. The purpose of this study was to clarify the long-term outcomes of Oberlin’s transfer based on the objective evaluation of elbow flexion strength and subjective functional evaluation of patients. Methods: Six patients with BPI who underwent Oberlin’s transfer were reviewed retrospectively by their medical records. The mean age at surgery was 29.5 years, and the mean follow-up duration was 13 years. The objective functional outcomes were evaluated by biceps muscle strength using the Medical Research Council (MRC) grade at preoperative, postoperative, and final follow-up. The patient-derived subjective functional outcomes were evaluated using the Quick Disability of the Arm, Shoulder, and Hand (QuickDASH) questionnaire at final follow-up. Results: All patients had MRC grade 0 (M0) or 1 (M1) elbow flexion strength before operation. Four patients gained M4 postoperatively and maintained or increased muscle strength at the final follow-up. One patient gained M3 postoperatively and at the final follow-up. Although one patient achieved M4 postoperatively, the strength was reduced to M2 due to additional disorder. The mean score of QuickDASH was 36.5 (range, 7–71). Patients were divided into two groups; three patients had lower scores and the other three patients had higher scores of QuickDASH. Conclusions: Oberlin’s transfer is effective in the restoration of elbow flexion and can maintain the strength for more than 10 years. Patients with upper BPI with restored elbow flexion strength and no complicated nerve disorders have over ten-year subjective satisfaction.


2008 ◽  
Vol 97 (4) ◽  
pp. 317-323 ◽  
Author(s):  
P. Songcharoen

Brachial plexus injury in adults is commonly caused by motorcycle accidents. Surgical management consists of nerve repair and nerve grafting for extraforaminal nerve root or trunk injury, and of neurotization or nerve transfer for nerve roots avulsion. In general, the results regarding restoration of shoulder and elbow function are good but reinnervation of the forearm muscles is less than safisfactory in respect to restoration of hand function. Functioning free muscle transfer in combination with selective nerve transfer is a reasonable alternative surgical procedure.


2018 ◽  
Vol 51 (02) ◽  
pp. 137-144
Author(s):  
Mukund Ramchandra Thatte ◽  
Binita Bharat Raut ◽  
Amita Shivyogi Hiremath ◽  
Sushil Ramesh Nehete ◽  
Nayana Somala Nayak

ABSTRACT Objective: To study the correlation of compound muscle action potential of donor nerves with the recovery of elbow flexion in Oberlin transfer in brachial plexus injury. Introduction: Distal nerve transfer using motor fascicle of ulnar or median nerve to restore elbow flexion is a part of reconstructive surgery after upper brachial plexus injury, first described by Oberlin et al. However, one of the most critical influences on functional outcome is number of functioning motor axons in donor fascicle which is reflected by its compound muscle action potential. We studied whether nerve transfers with donor nerves showing higher amplitudes will yield better reinnervation of muscle and therefore better function as estimated by clinical examination. Methods: We prospectively studied 30 cases of upper brachial plexus injury, of which were treated with Oberlin transfer using ulnar or median or both nerves. The prerequisites were no elbow flexion and hand and wrist flexors showing the power of more than Medical research Council MRC Grade 4. Donor nerves selected either ulnar or median having CMAP >4 mv in our electrophysiology laboratory during nerve conduction study. Patients were followed up for 1 year and assessed clinically for restoration of elbow flexion, weight tolerance. Results: A total of 30 patients of Oberlin transfer were evaluated for improvement power of biceps and elbow flexion. (MRC) grading was done at 1 year. Twenty-seven patients had a good result (MRC grade ≥3), i.e., 90% of patients. Based on the MRC grades, we categorised the patients into two groups as follows: Group A and Group B. Group A included patients with MRC Grade 4–5 and Group B included Grades 3–3.5. We tried to establish a correlation between CMAP and MRC scores by comparison of MRC grade patients for their pre CMAPs which revealed a statistically significant higher CMAPs between the groups. (Mann–Whitney U-test, P = 0.028). This indicates the association of higher pre-CMAPs with higher MRC grades. Conclusion: We conclude that higher the compound muscle action potential of donor nerves, better the recovery of elbow flexion in Oberlin transfer in brachial plexus injury.


Neurosurgery ◽  
2018 ◽  
Vol 85 (3) ◽  
pp. 369-374
Author(s):  
Brandon W Smith ◽  
Kate W-C Chang ◽  
Serena J Saake ◽  
Lynda J-S Yang ◽  
Kevin C Chung ◽  
...  

Abstract BACKGROUND A critical concept in brachial plexus reconstruction is the accurate assessment of functional outcomes. The current standard for motor outcome assessment is clinician-elicited, outpatient clinic-based, serial evaluation of range of motion and muscle power. However, discrepancies exist between such clinical measurements and actual patient-initiated use. We employed emerging technology in the form of accelerometry-based motion detectors to quantify real-world arm use after brachial plexus surgery. OBJECTIVE To evaluate (1) the ability of accelerometry-based motion detectors to assess functional outcome and (2) the real-world arm use of patients after nerve transfer for brachial plexus injury, through a pilot study. METHODS Five male patients who underwent nerve transfer after brachial plexus injury wore bilateral motion detectors for 7 d. The patients also underwent range-of-motion evaluation and completed multiple patient-reported outcome surveys. RESULTS The average age of the recruits was 41 yr (±17 yr), and the average time from operation was 2 yr (±1 yr). The VT (time of use ratio) for the affected side compared to the unaffected side was 0.73 (±0.27), and the VM (magnitude ratio) was 0.63 (±0.59). VT strongly and positively correlated with shoulder flexion and shoulder abduction: 0.97 (P = .008) and 0.99 (P = .002), respectively. CONCLUSION Accelerometry-based activity monitors can successfully assess real-world functional outcomes after brachial plexus reconstruction. This pilot study demonstrates that patients after nerve transfer are utilizing their affected limbs significantly in daily activities and that recovery of shoulder function is critical.


2000 ◽  
Vol 70 (11) ◽  
pp. 783-785 ◽  
Author(s):  
Adisak Sungpet ◽  
Chanyuth Suphachatwong ◽  
Viroj Kawinwonggowith

Sign in / Sign up

Export Citation Format

Share Document